Unified Approach to Fractional Calculus Images of Special Functions—A Survey
Abstract
:1. Introduction
2. Preliminaries
2.1. Special Functions of Fractional Calculus
2.2. Operators of Generalized Fractional Calculus
2.3. Some Special Cases of GFC Operators
3. Erdélyi-Kober and Riemann–Liouville Images of , and Simpler Special Functions
4. Results for the Generalized Fractional Calculus Operators of Special Functions
5. Examples of Erdélyi–Kober and Riemann–Liuoville Operators of Some Special Functions
6. Saigo Hypergeometric Operators of Various Special Functions
7. Marichev–Saigo–Maeda (M-S-M) Operators of Various Special Functions
8. Multiple Gel’fond-Leontiev Operators of Multi-Index Mittag-Leffler Functions; Hyper-Bessel Operators and Functions
9. Some “New” Special Functions and Their FC Images
10. Conclusions
- (1)
- Check if the considered SF can be presented as a Wright g.h.f. or as simpler -function; in more complicated cases, or if it is a Fox H-function or a Meijer G-function;
- (2)
- (3)
- Then, apply a general result like Theorem 3, Theorem 4 (or more generally, Theorem 2) and their special cases (Lemmas 1–4) and the examples, provided in this survey.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Machado, J.A.T.; Kiryakova, V. Recent history of the fractional calculus: Data and statistics. In Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; De Gryuter: Berlin, Germany, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Kiryakova, V. Fractional calculus operators of special functions?—The result is well predictable! Chaos Solitons Fractals 2017, 102, 2–15. [Google Scholar] [CrossRef]
- Kiryakova, V. Use of fractional calculus to evaluate some improper integrals of special functions. AIP Conf. Proc. 2017, 1910, 050012. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. Fractional calculus of some “new” but not new special functions: k-, multi-index-, and S-analogues. AIP Conf. Proc. 2019, 2172, 0500088. [Google Scholar] [CrossRef]
- Kiryakova, V. Commentary: “A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function”. Front. Phys. 2019, 7, 145. [Google Scholar] [CrossRef]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman—J. Wiley: Harlow, UK; New York, NY, USA, 1994. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions; Gordon and Breach Sci. Publ.: New York, NY, USA; London, UK; Paris, France; Tokyo, Japan, 1992. [Google Scholar]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables; Ellis Horwood: Chichester, UK, 1983. Translated from Russian; Method of Evaluation of Integrals of Special Functions (In Russian); Nauka i Teknika, Minsk, Belarus, 1978 [Google Scholar]
- Srivastava, H.M.; Gupta, K.S.; Goyal, S.P. The H-Functions of One and Two Variables with Applications; South Asian Publs: New Delhi, India, 1982. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Acad. Press: Boston, MA, USA, 1999. [Google Scholar]
- Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions; Ser. Mathematics and Its Applications 287; Kluwer Acad. Publ.: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Erdélyi, A. (Ed.) Higher Transcendental Functions; McGraw Hill: New York, NY, USA, 1953; Volume 1–3. [Google Scholar]
- Kilbas, A.A. Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 2005, 8, 113–126. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 51, 298628. [Google Scholar] [CrossRef] [Green Version]
- Rogosin, S. The role of the Mittag-Leffler function in fractional modeling. Mathematics 2015, 3, 368–381. [Google Scholar] [CrossRef]
- Paneva-Konovska, J. From Bessel to Multi-Index Mittag-Leffler Functions: Enumerable Families, Series in Them and Convergence; World Scientific Publishing: London, UK, 2016. [Google Scholar]
- Kiryakova, V. Multiple Dzrbashjan-Gelfond-Leontiev fractional differintegrals. Recent Adv. Appl. Math. 1996, 96, 281–294. [Google Scholar]
- Kiryakova, V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 2000, 118, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comput. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Koroleva, A.A.; Rogosin, S.V. Multi-parametric Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 2013, 16, 378–404. [Google Scholar] [CrossRef]
- Kiryakova, V. The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Comput. Math. Appl. 2010, 59, 1128–1141. [Google Scholar] [CrossRef] [Green Version]
- Dzrbashjan, M.M. On the integral transformations generated by the generalized Mittag-Leffler function. Izv. Arm. SSR 1960, 13, 21–63. (In Russian) [Google Scholar]
- Paneva-Konovska, J. Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. Compt. Rend. Acad. Bulg. Sci. 2011, 64, 1089–1098. [Google Scholar]
- Kiryakova, V. A guide to special functions in fractional calculus. Math. Spec. Issue Spec. Funct. Math. Phys. Part II 2020. Submitted. [Google Scholar]
- Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 405–430. [Google Scholar] [CrossRef]
- Agarwal, P.; Rogosin, S.V.; Trujillo, J.J. Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions. Proc. Indian Acad. Sci. (Math. Sci.) 2015, 125, 291–306. [Google Scholar] [CrossRef]
- Paneva-Konovska, J.; Kiryakova, V. On the multi-index Mittag-Leffler functions and their Mellin transforms. Int. J. Appl. Math. 2020, 33, 549–571. [Google Scholar] [CrossRef]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Sandev, T.; Tomovski, Ž. Fractional Equations and Models (Theory and Applications); Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Sneddon, I.N. The use in mathematical analysis of Erdélyi-Kober operators and some of their applications. In Fractional Calculus and Its Applications (Proc. Internat. Conf. Held in New Haven); Ross, B., Ed.; Lecture Notes in Math. 457; Springer: New York, NY, USA, 1975; pp. 37–79. [Google Scholar]
- Kiryakova, V. Generalized fractional calculus operators with special functions. In Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; De Gryuter: Berlin, Germany, 2019; pp. 87–110. [Google Scholar] [CrossRef]
- Kiryakova, V.; Luchko, Y. Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Cent. Eur. J. Phys. 2013, 11, 1314–1336. [Google Scholar] [CrossRef]
- Luchko, Y.; Trujillo, J.J. Caputo type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 2007, 10, 249–267. [Google Scholar]
- Kiryakova, V. A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Kiryakova, V. Gel’fond-Leont’ev integration operators of fractional (multi-)order generated by some special functions. AIP Conf. Proc. 2018, 2048, 050016. [Google Scholar] [CrossRef]
- Marichev, O.I. Volterra equation of Mellin convolutional type with a Horn function in the kernel. Izv. AN BSSR, Ser. Fiz.-Mat. Nauk 1974, 1, 128–129. (In Russian) [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods & Special Functions, Varna’96 (Proc. Second In- ternat. Workshop); Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Science Culture Technology Publishing: Singapore, 1998; pp. 386–400. [Google Scholar]
- Dimovski, I. Operational calculus for a class of differental operators. C. R. Acad. Bulg. Sci. 1966, 19, 1111–1114. [Google Scholar]
- Dimovski, I.; Kiryakova, V. Generalized Poisson transmutations and corresponding representations of hyper-Bessel functions. C. R. Acad. Bulg. Sci. 1986, 39, 29–32. [Google Scholar]
- Delerue, P. Sur le calcul symboloque à n variables et fonctions hyperbesseliennes (II). Annales Soc. Sci. Bruxelles, Ser. 1 1953, 3, 229–274. [Google Scholar]
- Erdélyi, A. (Ed.) Tables of Integral Transforms; McGraw Hill: New York, NY, USA, 1954; Volume 1–2. [Google Scholar]
- Askey, R. Orthogonal Polynomials and Special Functions; SIAM: Philadelphia, PA, USA, 1975. [Google Scholar]
- Lavoie, J.L.; Osler, T.J.; Tremblay, R. Fractional derivatives and special functions. SIAM Rev. 1976, 18, 240–268. [Google Scholar] [CrossRef]
- Ali, R.S.; Mubeen, S.; Ahmad, M.M. A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind. J. Math. Comput. Sci. 2020, 22, 266–281. [Google Scholar] [CrossRef]
- Mubeen, S.; Ali, R.S.; Nayab, I.; Rahman, G.; Abdeljavad, T.; Nisar, K.S. Integral transforms of an extended generalized multi-index Bessel function. AIMS Math. 2020, 5, 7531–7546. [Google Scholar] [CrossRef]
- Abdalla, M. Fractional operators for the Wright hypergeometric matrix functions. Adv. Differ. Equ. 2020, 2020, 246. [Google Scholar] [CrossRef]
- Kiryakova, V. All the special functions are fractional differintegrals of elementary functions. J. Phys. A Math. Gen. 1997, 30, 5085–5103. [Google Scholar] [CrossRef] [Green Version]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial. Mathematics 2019, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Sebastian, N. Generalized fractional integration of Bessel function of first kind. Integr. Transf. Spec. Funct. 2008, 19, 869–883. [Google Scholar] [CrossRef]
- Sharma, M.; Jain, R. A note on a generalized M-series as a special function of fractional calculus. Fract. Calc. Appl. Anal. 2009, 12, 449–452. [Google Scholar]
- Lavault, C. Fractional calculus and generalized Mittag-Leffler type functions. arXiv 2017, arXiv:1703.01912. [Google Scholar]
- Kumar, D.; Saxena, R.K. Generalized fractional calculus of the M-Series involving F3 hypergeometric function. Sohag. J. Math. 2015, 2, 17–22. [Google Scholar] [CrossRef]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Kiryakova, V. On two Saigo’s fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal. 2006, 9, 159–176. [Google Scholar]
- Sharma, K. An introduction to the generalized fractional integration. Bol. Soc. Paran. Math. 2012, 30, 85–90. [Google Scholar] [CrossRef]
- Purohit, S.D.; Suthar, D.L.; Kalla, S.L. Marichev-Saigo-Maeda fractional integration operators of the Bessel functions. Le Mat. 2012, LXVII, 21–32. [Google Scholar] [CrossRef]
- Agarwal, R.; Jain, S.; Agarwal, R.P.; Baleanu, D. Response: Commentary: A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function. Front. Phys. 2020, 8, 72. [Google Scholar] [CrossRef]
- Agarwal, R.; Jain, S.; Agarwal, R.P.; Baleanu, D. A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function. Front. Phys. 2018, 6, 79. [Google Scholar] [CrossRef]
- Mondal, S.R.; Nisar, K.S. Marichev-Saigo-Maeda fractional integration operators involving generalized Bessel functions. Math. Probl. Eng. 2014, 11, 274093. [Google Scholar] [CrossRef]
- Nisar, K.S.; Mondal, S.R.; Agarwal, P. Composition formulas of Bessel-Struve kernel function. arXiv 2016, arXiv:1602.00279v1. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Saxena, R.K.; Nishimoto, K. N-fractional calculus of generalized Mittag-Leffler functions. J. Fract. Calc. 2010, 37, 43–52. [Google Scholar]
- Saxena, R.K.; Pogany, T.K.; Ram, J.; Daiya, J. Dirichlet averages of generalized multi-index Mittag-Leffler functions. Armen. J. Math. 2010, 3, 174–187. [Google Scholar]
- Kumar, D.; Kumar Gupta, R.; Singh Rawat, D. Marichev-Saigo-Maeda fractional differential operator involving mittag-Leffler type function with four parameters. J. Chem. Biol. Phys. Sci. Sect. C: Phys. Sci. 2017, 7, 201–210. [Google Scholar]
- Kiryakova, V. From the hyper-Bessel operators of Dimovski to the generalized fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 977–1000. [Google Scholar] [CrossRef]
- Gehlot, K.S. Differential equation of k-Bessel’s function and its properties. Nonl. Anal. Differ. Equ. 2014, 2, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.R. Representation formulae and monotonicity of the generalized k-Bessel functions. arXiv 2016, arXiv:1611.07499. [Google Scholar]
- Shaktawat, B.S.; Rawat, D.S.; Gupta, R.K. On generalized fractional calculus of the generalized k-Bessel function. J. Rajasthan Acad. Phys. Sci. 2017, 16, 9–19. [Google Scholar]
- Dorrego, G.A.; Cerruti, R.A. The k-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 2012, 7, 705–716. [Google Scholar]
- Gupta, A.; Parihar, C.L. k-New generalized Mittag-Leffler function. J. Fract. Calc. Appl. 2014, 5, 165–176. [Google Scholar]
- Nisar, K.S.; Eata, A.F.; Al-Dhaifallah, M.; Choi, J. Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution. Adv. Differ. Equ. 2016, 304. [Google Scholar] [CrossRef] [Green Version]
- Nisar, K.S.; Purohit, S.D.; Parmar, R.K. Fractional calculus and certain integrals of generalized multiindex Bessel function. arXiv 2017, arXiv:1706.08039. [Google Scholar]
- Saxena, R.K.; Daiya, J. Integral transforms of S-functions. Le Mat. 2015, LXX, 147–159. [Google Scholar]
- Purohit, M.; Badguzer, A. MSM fractional integration and differentiation operators of multi-parametric K-Mittag Leffler function and generalized multi-index Bessel function. Intern. J. Stat. Appl. Math. 2018, 3, 156–161. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260. https://doi.org/10.3390/math8122260
Kiryakova V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics. 2020; 8(12):2260. https://doi.org/10.3390/math8122260
Chicago/Turabian StyleKiryakova, Virginia. 2020. "Unified Approach to Fractional Calculus Images of Special Functions—A Survey" Mathematics 8, no. 12: 2260. https://doi.org/10.3390/math8122260
APA StyleKiryakova, V. (2020). Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics, 8(12), 2260. https://doi.org/10.3390/math8122260