On Differential Equations Characterizing Legendrian Submanifolds of Sasakian Space Forms
Abstract
:1. Introduction and Motivations
2. Preliminaries and Notations
3. The Main Results
- (i)
- The second fundamental form satisfies the followingprovided that the inequalityholds, wheredenotes the squared norm of the Hessian of ψ andis an orthonormal frame tangent to. Moreover, the equality holds if and only if
- (ii)
- Furthermore, if the inequalityholds, then we have lower bound for eigenvalue, that is,
- (iii)
- In particular, if the following inequalityholds, then the eigenvaluesatisfies the following inequality
- (i)
- If, thenis isometric to the standard spherewithand.
- (ii)
- If following Ricci inequality holds
- (i)
- If, thenis isometric to standard sphere.
- (ii)
- Ifthenis isometric to the sphere.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yano, K.; Nagano, T. Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math. 1959, 69, 451–461. [Google Scholar] [CrossRef]
- Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 1962, 14, 333–340. [Google Scholar] [CrossRef]
- Barros, A. Applications of Bochner formula to minimal submanifold of the sphere. J. Geom. Phys. 2002, 44, 196–201. [Google Scholar] [CrossRef]
- Berger, M.; Gauduchon, P.; Mazet, E. Le spectre d’une variété riemannienne. In Le Spectre d’Une Variété Riemannienne; Springer: Berlin/Heidelberg, Germany, 1971; pp. 141–241. [Google Scholar]
- Chavel, I. Eigenvalues in Riemannian Geometry; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Choi, H.I.; Wang, A.N. A first eigenvalue estimate for minimal hypersurfaces. J. Differ. Geom. 1983, 18, 559–562. [Google Scholar] [CrossRef]
- Deshmukh, S. Conformal vector fields and eigenvectors of Laplace operator. Math. Phys. Anal. Geom. 2012, 15, 163–172. [Google Scholar] [CrossRef]
- Deshmukh, S.; Al-Solamy, F. A note on conformal vector fields on a Riemannian manifold. Colloq. Math. 2014, 136, 65–73. [Google Scholar] [CrossRef]
- Deshmukh, S. Characterizing Spheres and Euclidean Spaces by Conformal Vector Fields. Ann. Math. Pura Appl. 2017, 196, 2135–2145. [Google Scholar] [CrossRef]
- Erkekoğlu, F.; García-Río, E.; Kupeli, D.N.; Ünal, B. Characterizing specific Riemannian manifolds by differential equations. Acta Appl. Math. 2003, 76, 195–219. [Google Scholar] [CrossRef]
- García-Río, E.; Kupeli, D.N.; Unal, B. On a differential equation characterizing Euclidean sphere. J. Differ. Equ. 2003, 134, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Jamali, M.; Shahid, M.H. Application of Bochner formula to generalized Sasakian space forms. Afrika Matematika 2018, 29, 1135–1139. [Google Scholar] [CrossRef]
- Tashiro, Y. Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 1965, 117, 251–275. [Google Scholar] [CrossRef]
- Barbosa, J.N.; Barros, A. A lower bound for the norm of the second fundamental form of minimal hypersurfaces of Sn+1. Arch. Math. 2003, 81, 478–484. [Google Scholar] [CrossRef]
- Lichnerowicz, A. Geometrie des Groupes de Transformations; Dunod: Malakoff, France, 1958. [Google Scholar]
- Barros, A.; Gomes, J.N.; Ernani, J.R. A note on rigidity of the almost Ricci soliton. Arch. Math. 2013, 100, 481–490. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q. Simons-type inequalities for the compact submanifolds in the space of constant curvature. Kodai Maths J. 2007, 30, 344–351. [Google Scholar] [CrossRef]
- Simons, J. Minimal Varieties in Riemannian Manifolds. Ann. Math. 1968, 88, 62–105. [Google Scholar] [CrossRef]
- Ali, A.; Laurian-Ioan, P. Geometric classification of warped products isometrically immersed in Sasakian space forms. Math. Nachr. 2018, 292, 234–251. [Google Scholar]
- Mihai, I.; Presură, I. An improved first Chen inequality for Legendrian submanifolds in Sasakian space forms. Period. Math. Hung. 2017, 74, 220–226. [Google Scholar] [CrossRef]
- Sasahara, T. A class of biminimal Legendrian submanifolds in Sasakian space forms. Math. Nachr. 2014, 287, 79–90. [Google Scholar] [CrossRef]
- Aquib, M.; Boyom, M.N.; Shahid, M.H.; Vîlcu, G.-E. The First Fundamental Equation and Generalized Wintgen-Type Inequalities for Submanifolds in Generalized Space Forms. Mathematics 2019, 7, 1151. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.; Mofarreh, F.; Alluhaibi, N.; Ali, A.; Ahmad, I. On Differential Equations Characterizing Legendrian Submanifolds of Sasakian Space Forms. Mathematics 2020, 8, 150. https://doi.org/10.3390/math8020150
Ali R, Mofarreh F, Alluhaibi N, Ali A, Ahmad I. On Differential Equations Characterizing Legendrian Submanifolds of Sasakian Space Forms. Mathematics. 2020; 8(2):150. https://doi.org/10.3390/math8020150
Chicago/Turabian StyleAli, Rifaqat, Fatemah Mofarreh, Nadia Alluhaibi, Akram Ali, and Iqbal Ahmad. 2020. "On Differential Equations Characterizing Legendrian Submanifolds of Sasakian Space Forms" Mathematics 8, no. 2: 150. https://doi.org/10.3390/math8020150
APA StyleAli, R., Mofarreh, F., Alluhaibi, N., Ali, A., & Ahmad, I. (2020). On Differential Equations Characterizing Legendrian Submanifolds of Sasakian Space Forms. Mathematics, 8(2), 150. https://doi.org/10.3390/math8020150