Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
Abstract
:1. Introduction
- Continuous SIP. All the measures , with have continuous support.
- Discrete SIP. The measure has continuous support and the measures are discrete, i.e., they are supported on finite subsets.
- Discrete-Continuous SIP. The measure has continuous support and the measures are discrete.
2. Background on Jacobi Orthogonal Polynomials
- (13a)
- This case has been proved in ([33], Lemma 1).
- (13b)
- We use the same technique as in ([33], Lemma 1), getting
- (13c)
- In this case, we cannot use the Stolz–Cesàro criterion in the previous straightforward way. Then, we use a different approach based on the Christoffel–Darboux formula (see ([32], f. (4.5.2))):First, it is enough to apply (9) to getNow, using a Leibniz rule, we obtain (see also [36])Taking derivatives again, we deduceDividing the previous expression by and evaluating at and , we get
3. Asymptotic Behavior of the Eigenvalues
4. Some Properties of Discrete Jacobi–Sobolev Orthogonal Polynomials
5. Asymptotics of the Value
Limit |
Limit |
Limit |
6. Conclusions
Classical Jacobi | Discrete Jacobi–Sobolev | |
Asymptotic behavior of the eigenvalues |
- Theorem 3 holds for and the case when remains open.
- Theorem 3 has not been established for the Krall case, that is, when Therefore, it is another open problem.
- Numerical experiments lead us to think that Theorem 3 does not hold if we relax the hypothesis. Thus, the question is: what is the value of the limit, if it exists, when either and or and ?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lewis, D.C. Polynomial least square approximations. Am. J. Math. 1947, 69, 273–278. [Google Scholar] [CrossRef]
- Schäfke, F.W.; Wolf, G. Einfache verallgemeinerte klassische Orthogonalpolynome. J. Reine Angew. Math. 1973, 262, 339–355. [Google Scholar]
- Althammer, P. Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation. J. Reine Angew. Math. 1962, 211, 192–204. [Google Scholar]
- Gröbner, W. Orthogonale Polynomsysteme, die Gleichzeitig mit f(x) auch deren Ableitung f′(x) approximieren. In Funktionalanalysis, Approximationstheorie, Numerische Mathematik; Collatz, L., Ed.; ISNM 7; Birkhäuser: Basel, Switzerland, 1967; pp. 24–32. [Google Scholar]
- Marcellán, F.; Xu, Y. On Sobolev orthogonal polynomials. Expos. Math. 2015, 33, 308–352. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A.; Koch, P.E.; Nørsett, S.P.; Sanz-Serna, J.M. On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 1991, 65, 151–175. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A.; Sanz-Serna, J.M.; Koch, P.E.; Nørsett, S.P. Orthogonality and approximation in a Sobolev space. In Algorithms for Approximation, II (Shrivenham, 1988); Chapman and Hall: London, UK, 1990; pp. 117–124. [Google Scholar]
- Marcellán, F.; Moreno-Balcázar, J.J.; Martínez-Finkelshtein, A. k-coherence of measures with non-classical weights. In Margarita Mathematica en Memoria de José Javier Guadalupe Hernández; Servicio de Publicaciones, Universidad de la Rioja: Logroño, Spain, 2001; pp. 77–83. [Google Scholar]
- De Jesus, M.N.; Petronilho, J. Sobolev orthogonal polynomials and (M,N) coherent pairs of measures. J. Comput. Appl. Math. 2013, 237, 83–101. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, M.N.; Marcellán, F.; Petronilho, J.; Pinzón-Cortés, N.C. (M,N)-coherent pairs of order (m,k) and Sobolev orthogonal polynomials. J. Comput. Appl. Math. 2014, 256, 16–35. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.H.; Littlejohn, L.L. The orthogonality of the Laguerre polynomials {Ln(−k)(x)} for positive integers k. Ann. Numer. Math. 1995, 2, 289–303. [Google Scholar]
- Pérez, T.E.; Piñar, M.A. On Sobolev orthogonality for the generalized Laguerre polynomials. J. Approx. Theory 1996, 86, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Álvarez de Morales, M.; Pérez, T.E.; Piñar, M.A. Sobolev orthogonality for the Gegenbauer polynomials {Cn(−N+1/2)(x)}n≥0. J. Comput. Appl. Math. 1998, 100, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, M.; Pérez, T.E.; Piñar, M.A.; Rezola, M.L. Sobolev orthogonal polynomials: The discrete-continuous case. Methods Appl. Anal. 1999, 6, 593–616. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, M.; Álvarez de Morales, M.; Rezola, M.L. Orthogonality of the Jacobi polynomials with negative integer parameters. J. Comput. Appl. Math. 2002, 145, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lara, J.F. On the Sobolev orthogonality of classical orthogonal polynomials for non standard parameters. Rocky Mountain J. Math. 2017, 47, 267–288. [Google Scholar] [CrossRef]
- López, G.; Marcellán, F.; Van Assche, W. Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product. Constr. Approx. 1995, 11, 107–137. [Google Scholar] [CrossRef] [Green Version]
- Marcellán, F.; Alfaro, M.; Rezola, M.L. Orthogonal polynomials on Sobolev spaces: Old and new directions. J. Comput. Appl. Math. 1993, 48, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Meijer, H.G. A short history of orthogonal polynomials in a Sobolev space. I. The non-discrete case. Nieuw Arch. Wisk. 1996, 14, 93–112. [Google Scholar]
- Martínez-Finkelshtein, A. Asymptotic properties of Sobolev orthogonal polynomials. J. Comput. Appl. Math. 1998, 99, 491–510. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Finkelshtein, A. Analytic aspects of Sobolev orthogonal polynomials revisited. J. Comput. Appl. Math. 2001, 127, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Marcellán, F.; Moreno-Balcázar, J.J. Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports. Acta Appl. Math. 2006, 94, 163–192. [Google Scholar] [CrossRef] [Green Version]
- Marcellán, F.; Moreno-Balcázar, J.J. What is…a Sobolev orthogonal polynomial? Notices Am. Math. Soc. 2017, 64, 873–875. [Google Scholar] [CrossRef]
- Behr, N.; Dattoli, G.; Duchamp, G.H.E.; Licciardi, S.; Penson, K.A. Operational Methods in the Study of Sobolev-Jacobi Polynomials. Mathematics 2019, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Yu, X.; Wang, Z. Diagonalized Chebyshev Rational Spectral Methods for Second-Order Elliptic Problems on Unbounded Domains. Numer. Math. Theor. Meth. Appl. 2019, 12, 265–284. [Google Scholar] [CrossRef]
- Sharapudinov, I.I. Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs. Izv. Ross. Akad. Nauk Ser. Mat. 2019, 83, 204–226, translation in Izv. Math. 2019, 83, 391–412. [Google Scholar] [CrossRef]
- Sharapudinov, I.I. Sobolev-orthogonal systems of functions and some of their applications. Uspekhi Mat. Nauk 2019, 74, 87–164. (In Russian) [Google Scholar] [CrossRef]
- Mañas–Mañas, J.F.; Moreno–Balcázar, J.J. Classical Sobolev Orthogonal Polynomials: Eigenvalue Problem. Results Math. 2019, 74, 144. [Google Scholar] [CrossRef] [Green Version]
- Bavinck, H. Differential and difference operators having orthogonal polynomials with two linear perturbations as eigenfunctions. J. Comput. Appl. Math. 1998, 92, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Welman, R. Regularized kernel learning in Hilbert scales. Unpublish work.
- Littlejohn, L.L.; Mañas–Mañas, J.F.; Moreno–Balcázar, J.J.; Wellman, R. Differential operator for discrete Gegenbauer-Sobolev orthogonal polynomials: Eigenvalues and asymptotics. J. Approx. Theory 2018, 230, 32–49. [Google Scholar] [CrossRef] [Green Version]
- Szego, G. Orthogonal Polynomials. In American Mathematical Society Colloquium Publications, 4th ed.; American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Mañas–Mañas, J.F.; Marcellán, F.; Moreno–Balcázar, J.J. Asymptotic behavior of varying discrete Jacobi–Sobolev orthogonal polynomials. J. Comput. Appl. Math. 2016, 300, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Askey, R.A.; Roy, R. Gamma function. In NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010; pp. 135–147. [Google Scholar]
- Arvesú, J.; Álvarez–Nodarse, R.; Marcellán, F.; Pan, K. Jacobi–Sobolev-type orthogonal polynomials: Second-order differential equation and zeros. J. Comput. Appl. Math. 1998, 90, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Mañas–Mañas, J.F.; Marcellán, F.; Moreno–Balcázar, J.J. Asymptotics for varying discrete Sobolev orthogonal polynomials. Appl. Math. Comput. 2017, 314, 65–79. [Google Scholar] [CrossRef]
- Marcellán, F.; Ronveaux, A. On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. Indag. Math. 1990, 1, 451–464. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mañas-Mañas, J.F.; Moreno-Balcázar, J.J.; Wellman, R. Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials. Mathematics 2020, 8, 182. https://doi.org/10.3390/math8020182
Mañas-Mañas JF, Moreno-Balcázar JJ, Wellman R. Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials. Mathematics. 2020; 8(2):182. https://doi.org/10.3390/math8020182
Chicago/Turabian StyleMañas-Mañas, Juan F., Juan J. Moreno-Balcázar, and Richard Wellman. 2020. "Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials" Mathematics 8, no. 2: 182. https://doi.org/10.3390/math8020182
APA StyleMañas-Mañas, J. F., Moreno-Balcázar, J. J., & Wellman, R. (2020). Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials. Mathematics, 8(2), 182. https://doi.org/10.3390/math8020182