On a New Half-Discrete Hilbert-Type Inequality Involving the Variable Upper Limit Integral and Partial Sums
Abstract
:1. Introduction
2. Some Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Krnić, M.; Pečarić, J. Extension of Hilbert’s inequality. J. Math. Anal. Appl. 2006, 324, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Adiyasuren, V.; Batbold, T.; Azar, L.E. A new discrete Hilbert-type inequality involving partial sums. J. Inequalities Appl. 2019, 2019, 127. [Google Scholar] [CrossRef]
- Yang, B.C. On a generalization of Hilbert double series theorem. J. Nanjing Univ. Math. 2001, 18, 145–152. [Google Scholar]
- Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
- Krnić, M.; Pečarić, J. General Hilbert’s and Hardy’s inequalities. Math. Inequalities Appl. 2005, 8, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Perić, I.; Vuković, P. Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 2011, 5, 33–43. [Google Scholar] [CrossRef]
- Huang, Q.L. A new extension of Hardy-Hilbert-type inequality. J. Inequalities Appl. 2015, 2015, 397. [Google Scholar] [CrossRef] [Green Version]
- He, B. A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 2015, 431, 889–902. [Google Scholar] [CrossRef]
- Xu, J.S. Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
- Xie, Z.T.; Zeng, Z.; Sun, Y.F. A new Hilbert-type inequality with the homogeneous kernel of degree -2. Adv. Appl. Math. Sci. 2013, 12, 391–401. [Google Scholar]
- Zhen, Z.; Raja Rama Gandhi, K.; Xie, Z.T. A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral. Bull. Math. Sci. Appl. 2014, 7, 9–17. [Google Scholar]
- Xin, D.M. A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 2010, 30, 70–74. [Google Scholar]
- Azar, L.E. The connection between Hilbert and Hardy inequalities. J. Inequalities Appl. 2013, 2013, 452. [Google Scholar] [CrossRef] [Green Version]
- Adiyasuren, V.; Batbold, T.; Krnić, M. Hilbert–type inequalities involving differential operators, the best constants and applications. Math. Inequalities Appl. 2015, 18, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Rassias, M.T.; Yang, B.C. On half-discrete Hilbert’s inequality. Appl. Math. Comput. 2013, 220, 75–93. [Google Scholar] [CrossRef]
- Yang, B.C.; Krnić, M. A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequalities 2012, 6, 401–417. [Google Scholar]
- Rassias, M.T.; Yang, B.C. A multidimensional half—Discrete Hilbert—Type inequality and the Riemann zeta function. Appl. Math. Comput. 2013, 225, 263–277. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.C. On a multidimensional half-discrete Hilbert—Type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 2013, 242, 800–813. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.C. On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequalities 2019, 13, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Wen, Y.M. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 2016, 37, 329–336. [Google Scholar]
- Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernel and application. J. Jilin Univ. Sci. Ed. 2017, 55, 189–194. [Google Scholar]
- Hong, Y.; Huang, Q.L.; Yang, B.C.; Liao, J.Q. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non -homogeneous kernel and its applications. J. Inequalities Appl. 2017, 2017, 316. [Google Scholar] [CrossRef]
- Xin, D.M.; Yang, B.C.; Wang, A.Z. Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane. J. Funct. Spaces 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; He, B.; Yang, B.C. Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory. J. Math. Inequalities 2018, 12, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.X.; Yang, B.C. Equivalent property of a half-discrete Hilbert’s inequality with parameters. J. Inequalities Appl. 2018, 2018, 333. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Z.; Yang, B.C.; Chen, Q. Equivalent properties of a reverse’s half-discret Hilbert’s inequality. J. Inequalities Appl. 2019, 2019, 279. [Google Scholar] [CrossRef]
- Yang, B.C.; Wu, S.H.; Wang, A.Z. On a reverse half-discrete Hardy-Hilbert’s inequality with parameters. Mathematics 2019, 7, 1054. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.C.; Wu, S.H.; Liao, J.Q. On a new extended Hardy-Hilbert’s inequality with parameters. Mathematics 2020, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Wu, S.; Yang, B. On a New Half-Discrete Hilbert-Type Inequality Involving the Variable Upper Limit Integral and Partial Sums. Mathematics 2020, 8, 229. https://doi.org/10.3390/math8020229
Liao J, Wu S, Yang B. On a New Half-Discrete Hilbert-Type Inequality Involving the Variable Upper Limit Integral and Partial Sums. Mathematics. 2020; 8(2):229. https://doi.org/10.3390/math8020229
Chicago/Turabian StyleLiao, Jianquan, Shanhe Wu, and Bicheng Yang. 2020. "On a New Half-Discrete Hilbert-Type Inequality Involving the Variable Upper Limit Integral and Partial Sums" Mathematics 8, no. 2: 229. https://doi.org/10.3390/math8020229
APA StyleLiao, J., Wu, S., & Yang, B. (2020). On a New Half-Discrete Hilbert-Type Inequality Involving the Variable Upper Limit Integral and Partial Sums. Mathematics, 8(2), 229. https://doi.org/10.3390/math8020229