An Extended EDAS Method with a Single-Valued Complex Neutrosophic Set and Its Application in Green Supplier Selection
Abstract
:1. Introduction
2. Preliminaries
2.1. Single-Valued Neutrosophic Set
2.2. Single-Valued Complex Neutrosophic Set
- (1)
- The sum of A and B, denoted as , is defined as
- (2)
- The product of A and B, denoted as , is defined as
- (3)
- The scalar multiplication of A is a single-valued complex neutrosophic set denoted as , defined as:
- (4)
- The power of A is denoted as , and defined as:
- (1)
- If , then ;
- (2)
- If , then .
3. The Einstein Operator with SVCNNs
- (1)
- (2)
- (3)
- (4)
- (1)
- When , we haveTherefore, when , the equation is true.
- (2)
- Thus, when , the equation is true.
4. The EDAS Method with SVCNNs
5. Numerical
5.1. The Numerical Example for SVCNS MAGDM Problem
5.2. A Comparison Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dai, Z.; Aqlan, F.; Gao, K.; Zhou, Y. A two-phase method for multi-echelon location-routing problems in supply chains. Expert Syst. Appl. 2019, 115, 618–634. [Google Scholar] [CrossRef]
- Lo, H.W.; Liou, J.J.; Wang, H.S.; Tsai, Y.S. An integrated model for solving problems in green supplier selection and order allocation. J. Clean. Prod. 2018, 190, 339–352. [Google Scholar] [CrossRef]
- Banaeian, N.; Mobli, H.; Fahimnia, B.; Nielsen, I.E.; Omid, M. Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry. Comput. Oper. Res. 2018, 89, 337–347. [Google Scholar] [CrossRef]
- Mumtaz, U.; Ali, Y.; Petrillo, A.; De Felice, F. Identifying the critical factors of green supply chain management: Environmental benefits in Pakistan. Sci. Total Environ. 2018, 640, 144–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, F.; Laili, Y.; Hou, B.; Lv, L.; Zhang, L. Green partner selection in virtual enterprise based on Pareto genetic algorithms. Int. J. Adv. Technol. 2013, 67, 2109–2125. [Google Scholar] [CrossRef]
- Hosseini, S.; Barker, K. A Bayesian network model for resilience-based supplier selection. Int. J. Prod. Econ. 2016, 180, 68–87. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, L.; Chen, Y.; Chen, H. An integrated approach to green supplier selection based on the interval type-2 fuzzy best-worst and extended VIKOR methods. Inf. Sci. 2019, 502, 394–417. [Google Scholar] [CrossRef]
- Liu, P.; Gao, H.; Ma, J. Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment. Inf. Sci. 2019, 490, 292–316. [Google Scholar] [CrossRef]
- Qin, J.D.; Liu, X.W.; Pedrycz, W. An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. Eur. J. Oper. Res. 2017, 258, 626–638. [Google Scholar] [CrossRef]
- Gomes, L.; Lima, M. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 1992, 16, 113–127. [Google Scholar]
- Hwang, C.L.; Yoon, K.P. Multiple Attribute Decision Making; Springer: Berlin, Germany, 1981. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998; Volume 2, pp. 5–21. [Google Scholar]
- Govindan, K.; Jepsen, M.B. ELECTRE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2016, 250, 1–29. [Google Scholar] [CrossRef]
- Pamucar, D.; Cirovic, G. The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (mabac). Expert Syst. Appl. 2015, 42, 3016–3028. [Google Scholar] [CrossRef]
- Ji, P.; Wang, J.Q.; Zhang, H.Y. Selecting an outsourcing provider based on the combined MABAC-ELECTRE method using single-valued neutrosophic linguistic sets. Comput. Ind. Eng. 2018, 120, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, K.; Zavadskas, E.K.; Amiri, M.; Turskis, Z. Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. Int. J. Comput. Commun. Control 2016, 3, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, C.; Ghorabaee, M.K.; Zavadskas, E.K. Intuitionistic fuzzy EDAS method: An application to solid waste disposal site selection. J. Environ. Eng. Landsc. Manag. 2017, 25, 1–12. [Google Scholar] [CrossRef]
- Karaşan, A.; Kahraman, C. A novel interval-valued neutrosophic EDAS method: Prioritization of the United Nations national sustainable development goals. Soft Comput. 2018, 22, 4891–4906. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Smarandache, F. A unifying field in logics: Neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability and statistics. Multiple-Valued Logic 2001, 95, 5–21. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Rev. Air Force Acad. 2010, 10, 410–413. [Google Scholar]
- Sunderraman, R.; Wang, H. Interval neutrosophic sets and logic: Theory and applications in computing. arXiv 2005, arXiv:cs/0505014v1. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar] [CrossRef]
- Wang, J.Q.; Li, X.E. TODIM method with multi-valued neutrosophic sets. Control Decis. 2015, 30, 1139–1142. [Google Scholar]
- Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1817–1834. [Google Scholar] [CrossRef] [Green Version]
- Al-Quran, A.; Alkhazaleh, S. Relations between the complex neutrosophic sets with their applications in decision making. Axioms 2018, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Quek, S.G.; Broumi, S.; Selvachandran, G.; Bakali, A.; Talea, M.; Smarandache, F. Some results on the graph theory for complex neutrosophic sets. Symmetry 2018, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Sudharsan, S.; Ezhilmaran, D. Weighted arithmetic average operator based on interval-valued intuitionistic fuzzy values and their application to multi criteria decision making for investment. J. Inf. Optim. Sci. 2016, 37, 247–260. [Google Scholar] [CrossRef]
- Wang, J.Q.; Han, Z.Q.; Zhang, H.Y. Multi-criteria group decision-making method based on intuitionistic interval fuzzy information. Group Decis. Negot. 2014, 23, 715–734. [Google Scholar] [CrossRef]
- Yager, R.R. On ordered weighted averaging aggregation operators in multi -criteria decision making. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Kacprzyk, J.; Zadrożny, S. Linguistic summarization of the contents of Web server logs via the Ordered Weighted Averaging (OWA) operators. Fuzzy Sets Syst. 2016, 285, 182–198. [Google Scholar] [CrossRef]
- Zhou, L.G.; Chen, H.Y. Continuous generalized OWA operator and its application to decision making. Fuzzy Sets Syst. 2011, 168, 18–34. [Google Scholar] [CrossRef]
- Liu, P.; Teng, F. Multiple criteria decision making method based on normal interval-valued intuitionistic fuzzy generalized aggregation operator. Complexity 2016, 21, 277–290. [Google Scholar] [CrossRef]
- Ji, P.; Wang, J.Q.; Zhang, H.Y. Frank prioritized Bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third-party logistics providers. Neural Comput. Appl. 2018, 30, 799–823. [Google Scholar] [CrossRef]
- Yu, D. Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput. 2013, 13, 1235–1246. [Google Scholar] [CrossRef]
- Klement, E.P.; Mesiar, R.; Pap, E. Triangular norms. Position paper I: Basic analytical and algebraic properties. Fuzzy Sets Syst. 2004, 143, 5–26. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Yang, L.; Li, X. A Novel Generalized Simplified Neutrosophic Number Einstein Aggregation Operator. IAENG Int. J. Appl. Math. 2018, 48, 67–72. [Google Scholar]
- Peng, J.J.; Wang, J.Q.; Wu, X.H.; Wang, J.; Chen, X.H. Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 345–363. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wei, G. Some intuitionistic fuzzy Einstein hybrid aggregation operators and their application to multiple attribute decision making. Knowl.-Based Syst. 2013, 37, 472–479. [Google Scholar] [CrossRef]
G | F | L | G | L | |
F | VG | G | F | G | |
VG | VG | F | G | G |
F | F | F | F | F | |
F | G | G | F | G | |
G | G | G | VG | F |
G | F | L | G | L | |
G | G | G | F | VG | |
VG | G | F | G | G |
Attribute | Alternative | Aggregated Values |
---|---|---|
0.6171 | 0.5417 | 0.4695 | 0.6171 | 0.4695 | |
0.5908 | 0.6808 | 0.6333 | 0.4977 | 0.7067 | |
0.7401 | 0.6808 | 0.5622 | 0.6661 | 0.6171 | |
0.6618 | 0.6425 | 0.5626 | 0.6023 | 0.6130 |
Ranking | ||||
---|---|---|---|---|
0.0287 | 0.8106 | 0.9489 | ||
0.0283 | 0.8164 | 0.9386 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Cui, X.; Xian, H. An Extended EDAS Method with a Single-Valued Complex Neutrosophic Set and Its Application in Green Supplier Selection. Mathematics 2020, 8, 282. https://doi.org/10.3390/math8020282
Xu D, Cui X, Xian H. An Extended EDAS Method with a Single-Valued Complex Neutrosophic Set and Its Application in Green Supplier Selection. Mathematics. 2020; 8(2):282. https://doi.org/10.3390/math8020282
Chicago/Turabian StyleXu, Dongsheng, Xiangxiang Cui, and Huaxiang Xian. 2020. "An Extended EDAS Method with a Single-Valued Complex Neutrosophic Set and Its Application in Green Supplier Selection" Mathematics 8, no. 2: 282. https://doi.org/10.3390/math8020282
APA StyleXu, D., Cui, X., & Xian, H. (2020). An Extended EDAS Method with a Single-Valued Complex Neutrosophic Set and Its Application in Green Supplier Selection. Mathematics, 8(2), 282. https://doi.org/10.3390/math8020282