Next Article in Journal
Subadditive Pre-Image Variational Principle for Bundle Random Dynamical Systems
Next Article in Special Issue
Dynamics of General Class of Difference Equations and Population Model with Two Age Classes
Previous Article in Journal
Properties of Functions Formed Using the Sakaguchi and Gao-Zhou Concept
Previous Article in Special Issue
Sufficient Criteria for the Absence of Global Solutions for an Inhomogeneous System of Fractional Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Positive Solutions for a Class of p-Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems

1
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
2
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
3
School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway, Ireland
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(3), 308; https://doi.org/10.3390/math8030308
Submission received: 3 February 2020 / Revised: 24 February 2020 / Accepted: 25 February 2020 / Published: 27 February 2020

Abstract

:
In this paper, using the Avery–Henderson fixed point theorem and the monotone iterative technique, we investigate the existence of positive solutions for a class of p-Laplacian Hadamard fractional-order three-point boundary value problems.

1. Introduction

In this paper, we study the following p-Laplacian Hadamard fractional-order three-point boundary value problem
D α ( φ p ( D β y ( t ) ) ) = f t , y ( t ) , t ( 1 , e ) , y ( 1 ) = y ( e ) = δ y ( 1 ) = δ y ( e ) = 0 , D β y ( 1 ) = 0 , D β y ( e ) = b D β y ( η ) ,
where α ( 1 , 2 ] , β ( 3 , 4 ] are real numbers, and D α , D β are the Hadamard fractional derivatives; δ means that delta derivative, i.e., δ y ( 1 ) = t d y d t | t = 1 , δ y ( e ) = t d y d t | t = e ; φ p is the p-Laplacian, i.e., φ p ( s ) = | s | p 2 s with s R , p > 1 . The constants b , η and the function f satisfy the conditions:
(H1)
b [ 0 , + ) and η ( 1 , e ) with b p 1 ( log η ) α 1 [ 0 , 1 ) .
(H2)
f C ( [ 1 , e ] × R + , R + ) .
Fractional calculus arises naturally in describing complex phenomena in many applications. For example, Podlubny [1] introduces a fractional electric circuit model, and gives a closed-loop control system
0 D t q x ( t ) = α 0 D t q 1 ( y ( t ) x ( t ) ) 2 α 7 4 x ( t ) x 3 ( t ) , d y ( t ) d t = x ( t ) y ( t ) + z ( t ) , d z ( t ) d t = 100 7 y ( t ) ,
where 0 D t q , 0 D t q 1 are fractional derivatives. For more details on fractional applications, we refer the reader to [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. In [6], K. Diethelm and N. J. Ford studied numerical solutions for fractional differential equations of the form
y ( α ) ( t ) = f ( t , y ( t ) , y ( β 1 ) ( t ) , y ( β 2 ) ( t ) , , y ( β n ) ( t ) ) ,
with α > β n > β n 1 > > β 1 and α β n 1 , β j β j 1 1 , 0 < β 1 1 . They not only discussed the analytical question on solutions, but also investigated how the solutions depend on the given data. In [7], Y. Luchko studied the generalized time-fractional diffusion equation
D t α u ( t ) = div ( p ( x ) grad u ) q ( x ) u + F ( x , t ) ,
where 0 < α 1 , ( x , t ) G × ( 0 , T ) , G R n , and D t α is the Caputo–Dzherbashyan fractional derivative. The author used an appropriate maximum principle to obtain a unique solution, and also studied the continuous dependence on the data given in the problem.
Research on Hadamard fractional differential equations is at an early stage; see for example [19,20,21,22,23,24,25,26,27,28,29,30]. In [19], B. Ahmad and S. K. Ntouyas used fixed point theory to study the existence and uniqueness of solutions for a Hadamard type fractional differential equation involving integral boundary conditions
D α x ( t ) = f ( t , x ( t ) ) , 1 < t < e , 1 < α 2 , x ( 1 ) = 0 , x ( e ) = 1 Γ ( β ) 1 e log e s β 1 x ( s ) s d s , β > 0 ,
where f satisfies the Lipschitz condition.
On the other hand, p-Laplacian equations are extensively used in physics, mechanics, dynamical systems, etc (see [15,16,17,18,20,21,22,23,31]). For example, Leibenson [31] introduced p-Laplacian differential equations to study a mechanics problem involving turbulent flow in a porous medium. Recently, G. Wang et al. used the tools of Hadamard type fractional-order equations to study turbulent flow models, see [20,21]. In [20], they studied the uniqueness, the existence and nonexistence of solutions for the following Hadamard type fractional differential equation with the p-Laplacian operator
D β φ p D α χ ( t ) = f ( t , χ ( t ) , χ ( θ ( t ) ) ) , D α χ ( 1 ) = D α χ ( e ) = 0 , χ ( 1 ) = 0 , D α 1 χ ( 1 ) = η D α 1 χ ( e ) ,
where f C ( [ 1 , e ] × R 2 , R ) and θ C [ 1 , e ] . In [21], they also studied the unique positive solution for a Caputo–Hadamard-type fractional turbulent flow model
C H D χ 2 φ p ( t ) C H D χ 1 x ( t ) + f x ( t ) , I η γ , δ x ( t ) = 0 , t [ 1 , e ] , x ( 1 ) = λ x ( e ) , x ( 1 ) = x ( 1 ) = 0 , C H D χ 1 x ( 1 ) = 0 ,
where C H D is Caputo–Hadamard fractional derivative, I η γ , δ is the generalized Erdelyi–Kober fractional integral operator: I η γ , δ f ( t ) = η t η ( δ + γ ) Γ ( δ ) 0 t s η γ + η 1 f ( s ) t η s η 1 δ d s .
In this paper, we study positive solutions for the p-Laplacian Hadamard fractional-order differential Equation (1). Using the monotone iterative technique we show that (1) has two positive solutions, and we establish iterative formulas for the two solutions. In addition from the Avery–Henderson fixed point theorem, we also obtain that (1) has two positive solutions under some appropriate conditions on the nonlinearity f. It is interesting to note that the methods used in this paper can be applied to very general integral equations (and therefore very general differential equations) if the kernel has a suitable behavior as described in Section 2. The behavior of the Greens’ function of a problem will indicate whether the theory presented in this paper can be used efficiently.

2. Preliminaries

In this section, we provide the definition of the Hadamard fractional derivative; for other related detail materials see the book [5].
Definition 1.
The Hadamard derivative of fractional order q for a function g : [ 1 , ) R is defined as
D q g ( t ) = 1 Γ ( n q ) t d d t n 1 t log t log s n q 1 g ( s ) d s s , n 1 < q < n ,
where n = [ q ] + 1 , [ q ] denotes the integer part of the real number q and log ( · ) = log e ( · ) .
In (1), we let φ p ( D β y ( t ) ) = v ( t ) , t [ 1 , e ] . Then we have
v ( 1 ) = φ p ( D β y ( t ) ) | t = 1 = | D β y ( 1 ) | p 2 D β y ( 1 ) = 0 , v ( e ) = | D β y ( e ) | p 2 D β y ( e ) = | b D β y ( η ) | p 2 b D β y ( η ) = b p 1 v ( η ) .
Therefore, we obtain
D α v ( t ) = f ( t , y ( t ) ) , t ( 1 , e ) , v ( 1 ) = 0 , v ( e ) = b p 1 v ( η ) ,
where α ( 1 , 2 ] and b , η , f satisfy (H1)–(H2). Using a similar argument as in Lemmas 2 and 3 of [24], we obtain the following result.
Lemma 1.
The boundary value problem (2) is equivalent to the following Hammerstein-type integral equation
v ( t ) = 1 e H ( t , s ) f ( s , y ( s ) ) d s ,
where
H ( t , s ) = H 0 ( t , s ) + b p 1 ( log t ) α 1 1 b p 1 ( log η ) α 1 H 0 ( η , s ) , f o r t , s [ 1 , e ] , H 0 ( t , s ) = 1 Γ ( α ) ( log t ) α 1 ( 1 log s ) α 1 , 1 t s e , ( log t ) α 1 ( 1 log s ) α 1 ( log t log s ) α 1 , 1 s t e .
Proof. 
From the first equation in (2) we have
v ( t ) = c 1 ( log t ) α 1 + c 2 ( log t ) α 2 1 Γ ( α ) 1 t ( log t log s ) α 1 f ( s , y ( s ) ) d s s ,
where c i R , i = 1 , 2 and v ( 1 ) = 0 implies that c 2 = 0 . Then from v ( e ) = b p 1 v ( η ) we have
c 1 1 Γ ( α ) 1 e ( 1 log s ) α 1 f ( s , y ( s ) ) d s s = c 1 b p 1 ( log η ) α 1 b p 1 Γ ( α ) 1 η ( log η log s ) α 1 f ( s , y ( s ) ) d s s ,
and
c 1 = 1 ( 1 b p 1 ( log η ) α 1 ) Γ ( α ) 1 e ( 1 log s ) α 1 f ( s , y ( s ) ) d s s b p 1 ( 1 b p 1 ( log η ) α 1 ) Γ ( α ) 1 η ( log η log s ) α 1 f ( s , y ( s ) ) d s s .
Substituting this c 1 , we obtain
v ( t ) = 1 ( 1 b p 1 ( log η ) α 1 ) Γ ( α ) 1 e ( log t ) α 1 ( 1 log s ) α 1 f ( s , y ( s ) ) d s s + 1 Γ ( α ) 1 e ( log t ) α 1 ( 1 log s ) α 1 f ( s , y ( s ) ) d s s 1 Γ ( α ) 1 e ( log t ) α 1 ( 1 log s ) α 1 f ( s , y ( s ) ) d s s 1 Γ ( α ) 1 t ( log t log s ) α 1 f ( s , y ( s ) ) d s s b p 1 ( log t ) α 1 ( 1 b p 1 ( log η ) α 1 ) Γ ( α ) 1 η ( log η log s ) α 1 f ( s , y ( s ) ) d s s = 1 e H 0 ( t , s ) f ( s , y ( s ) ) d s s + b p 1 ( log t ) α 1 1 b p 1 ( log η ) α 1 1 e H 0 ( η , s ) f ( s , y ( s ) ) d s s = 1 e H ( t , s ) f ( s , y ( s ) ) d s s .
This completes the proof. ☐
Note that
φ p ( D β y ( t ) ) = v ( t ) = 1 e H ( t , s ) f ( s , y ( s ) ) d s s , t [ 1 , e ] .
Then we have
D β y ( t ) = φ p 1 1 e H ( t , s ) f ( s , y ( s ) ) d s s , t [ 1 , e ] ,
and together with the boundary conditions y ( 1 ) = y ( e ) = δ y ( 1 ) = δ y ( e ) = 0 , we have the following result.
Lemma 2.
The problem (3) is equivalent to the following Hammerstein-type integral equation
y ( t ) = 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s ,
where
G ( t , s ) = ( log t log s ) β 1 + ( log t ) β 2 ( 1 log s ) β 2 ( log s log t ) + ( β 2 ) log s ( 1 log t ) Γ ( β ) , 1 s t e , ( log t ) β 2 ( 1 log s ) β 2 ( log s log t ) + ( β 2 ) log s ( 1 log t ) Γ ( β ) , 1 t s e .
Proof. 
For convenience, we put ϕ ( t ) = φ p 1 1 e H ( t , s ) f ( s , y ( s ) ) d s s , t [ 1 , e ] . Then by a similar argument as in Lemma 1, we have
y ( t ) = c 1 ( log t ) β 1 + c 2 ( log t ) β 2 + c 3 ( log t ) β 3 + c 4 ( log t ) β 4 + 1 Γ ( β ) 1 t ( log t log s ) β 1 ϕ ( s ) d s s ,
where c i R , i = 1 , 2 , 3 , 4 and y ( 1 ) = δ y ( 1 ) = 0 implies that c 3 = c 4 = 0 . Consequently, we have
δ y ( t ) = c 1 ( β 1 ) ( log t ) β 2 + c 2 ( β 2 ) ( log t ) β 3 + β 1 Γ ( β ) 1 t ( log t log s ) β 2 ϕ ( s ) d s s .
As a result, we have
c 1 + c 2 + 1 Γ ( β ) 1 e ( 1 log s ) β 1 ϕ ( s ) d s s = 0 , c 1 ( β 1 ) + c 2 ( β 2 ) + β 1 Γ ( β ) 1 e ( 1 log s ) β 2 ϕ ( s ) d s s = 0 .
Solving this system, we obtain
c 1 c 2 = β 2 1 1 β 1 1 Γ ( β ) 1 e ( 1 log s ) β 1 ϕ ( s ) d s s β 1 Γ ( β ) 1 e ( 1 log s ) β 2 ϕ ( s ) d s s .
Hence, we have
y ( t ) = β 2 Γ ( β ) 1 e ( log t ) β 1 ( 1 log s ) β 1 ϕ ( s ) d s s β 1 Γ ( β ) 1 e ( log t ) β 1 ( 1 log s ) β 2 ϕ ( s ) d s s     β 1 Γ ( β ) 1 e ( log t ) β 2 ( 1 log s ) β 1 ϕ ( s ) d s s + β 1 Γ ( β ) 1 e ( log t ) β 2 ( 1 log s ) β 2 ϕ ( s ) d s s     + 1 Γ ( β ) 1 t ( log t log s ) β 1 ϕ ( s ) d s s    = 1 Γ ( β ) 1 e ( log t ) β 2 ( 1 log s ) β 2 ( log s log t ) + ( β 2 ) log s ( 1 log t ) ϕ ( s ) d s s     + 1 Γ ( β ) 1 t ( log t log s ) β 1 ϕ ( s ) d s s    = 1 e G ( t , s ) ϕ ( s ) d s s .
Consequently, we find
y ( t ) = 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s .
This completes the proof. ☐
Lemma 3.
The functions H 0 and G have the following properties:
(i)
H 0 ( t , s ) 0 , G ( t , s ) 0 for ( t , s ) [ 1 , e ] × [ 1 , e ] ,
(ii)
( β 2 ) ( log t ) β 2 ( 1 log t ) 2 ( log s ) 2 ( 1 log s ) β 2 Γ ( β ) G ( t , s ) M 0 ( log s ) 2 ( 1 log s ) β 2 for ( t , s ) [ 1 , e ] × [ 1 , e ] ,
(iii)
( β 2 ) ( log s ) 2 ( 1 log s ) β 2 ( log t ) β 2 ( 1 log t ) 2 Γ ( β ) G ( t , s ) M 0 ( log t ) β 2 ( 1 log t ) 2 , for ( t , s ) [ 1 , e ] × [ 1 , e ] , where M 0 = max β 1 , ( β 2 ) 2 .
Lemma 3 (ii) and (iii) are direct results from Lemma 3 in [14]. Moreover, by Lemma 3 (i) we have H ( t , s ) 0 for ( t , s ) [ 1 , e ] × [ 1 , e ] .
Let E : = C [ 1 , e ] , y : = max t [ 1 , e ] | y ( t ) | and P : = { y E : y ( t ) 0 , t [ 1 , e ] } . Then ( E , · ) is a real Banach space and P a cone on E. From Lemma 2, we define an operator A : E E as follows:
( A y ) ( t ) = 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s , y E .
Note that the continuity of the functions G , H , f , guarantees that the operator A is a completely continuous operator. Moreover if there is a y ¯ E such that A y ¯ = y ¯ , then from Lemma 2 we have that y ¯ is a solution for (1). Therefore, in what follows we study the existence of fixed points of the operator A.
Lemma 4.
(see [32]). Let E be a partially ordered Banach space, and x 0 , y 0 E with x 0 y 0 , D = [ x 0 , y 0 ] . Suppose that A : D E satisfies the following conditions:
(i)
A is an increasing operator;
(ii)
x 0 A x 0 , y 0 A y 0 , i.e., x 0 and y 0 is a subsolution and a supersolution of A;
(iii)
A is a completely continuous operator.
Then A has the smallest fixed point x * and the largest fixed point y * in [ x 0 , y 0 ] , respectively. Moreover, x * = lim n A n x 0 and y * = lim n A n y 0 .
Lemma 5.
(Avery-Henderson fixed point theorem, see [33]). Let P be a cone in a real Banach space and for some positive constants r and γ, there exist increasing, non-negative continuous functionals ξ and ζ on P, and a non-negative continuous functional ϑ on P with ϑ ( 0 ) = 0 , such that
ζ ( y ) ϑ ( y ) ξ ( y ) , and y γ ζ ( y ) , y P ( ζ , r ) ¯ with P ( ζ , r ) = y P : ζ ( y ) < r .
Suppose that there exist positive numbers μ < ν < r such that
ϑ ( λ y ) λ ϑ ( y ) , λ [ 0 , 1 ] and y P ( ϑ , ν ) .
If A : P ( ζ , r ) ¯ P is a completely continuous operator satisfying
(i)
ζ ( A y ) > r for all y P ( ζ , r ) ,
(ii)
ϑ ( A y ) < ν for all y P ( ϑ , ν ) ,
(iii)
P ( ξ , μ ) and ξ ( A y ) > μ for all y P ( ζ , μ ) ,
Then A has at least two fixed points y 1 and y 2 such that
μ < ξ ( y 1 ) w i t h ϑ ( y 1 ) < ν ; ν < ϑ ( y 2 ) w i t h ζ ( y 2 ) < r .
Lemma 6.
(see [23], Lemma 6). Let θ > 0 and ψ P . Then,
0 1 ψ ( t ) d t θ 0 1 ψ θ ( t ) d t , if θ 1 , and 0 1 ψ ( t ) d t θ 0 1 ψ θ ( t ) d t , if 0 < θ 1 .

3. Main Results

In this section we let
p * = min { 1 , p 1 } , p * = max { 1 , p 1 } ,
and
ω ( t ) = ( log t ) 2 ( 1 log t ) β 2 , σ ( t ) = ( log t ) β 2 ( 1 log t ) 2 , t [ 1 , e ] .
Now, we state our main results and give their proofs.
Theorem 1.
Suppose that (H1)–(H2) and the following conditions hold:
(H3)
There exist a 1 Γ ( β ) β 2 p 1 1 e 1 e ω p * ( s ) H p * p 1 ( s , τ ) σ p * ( τ ) d τ τ d s s 1 p p * , r 1 > 0 such that
f ( t , y ) a 1 y p 1 for y [ 0 , r 1 ] , t [ 1 , e ] .
(H4)
There exist a 2 0 , 2 p p * 1 p * Γ ( β ) M 0 p 1 1 e 1 e H p * p 1 ( s , τ ) σ p * ( τ ) d τ τ d s s 1 p p * , l 1 > 0 such that
f ( t , y ) a 2 y p 1 + l 1 for y R + , t [ 1 , e ] .
(H5)
f ( t , y ) is an increasing function in the second variable y, i.e., f ( t , y 1 ) f ( t , y 2 ) for y 1 y 2 , t [ 1 , e ] .
Then (1) has two positive solutions. Moreover, there exist two iterative sequences uniformly converging to the two solutions.
Proof. 
Using (H3) we have
[ ( A y ) ( t ) ] p * = 1 e G ( t , s ) 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ 1 p 1 d s s p *       = 0 1 G ( t , e s ) 0 1 H ( e s , e τ ) f ( e τ , y ( e τ ) ) d τ 1 p 1 d s p *       0 1 G p * ( t , e s ) 0 1 H ( e s , e τ ) f ( e τ , y ( e τ ) ) d τ p * p 1 d s       0 1 G p * ( t , e s ) 0 1 H p * p 1 ( e s , e τ ) f p * p 1 ( e τ , y ( e τ ) ) d τ d s       = 1 e G p * ( t , s ) 1 e H p * p 1 ( s , τ ) f p * p 1 ( τ , y ( τ ) ) d τ τ d s s       1 e G p * ( t , s ) 1 e H p * p 1 ( s , τ ) a 1 p * p 1 y p * ( τ ) d τ τ d s s .
Then, we can choose ε 1 > 0 such that ε 1 σ [ 0 , r 1 ] , and from Lemma 3 (iii) we have
[ ( A ε 1 σ ) ( t ) ] p * 1 e G p * ( t , s ) 1 e H p * p 1 ( s , τ ) a 1 p * p 1 ε 1 p * σ p * ( τ ) d τ τ d s s        1 e β 2 Γ ( β ) p * ω p * ( s ) σ p * ( t ) 1 e H p * p 1 ( s , τ ) a 1 p * p 1 ε 1 p * σ p * ( τ ) d τ τ d s s        ε 1 p * σ p * ( t ) .
Thus
A ε 1 σ ε 1 σ .
On the other hand, from (H4) we have
[ ( A y ) ( t ) ] p * = 1 e G ( t , s ) 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ 1 p 1 d s s p *       = 0 1 G ( t , e s ) 0 1 H ( e s , e τ ) f ( e τ , y ( e τ ) ) d τ 1 p 1 d s p *       0 1 G p * ( t , e s ) 0 1 H ( e s , e τ ) f ( e τ , y ( e τ ) ) d τ p * p 1 d s       0 1 G p * ( t , e s ) 0 1 H p * p 1 ( e s , e τ ) f p * p 1 ( e τ , y ( e τ ) ) d τ d s       = 1 e G p * ( t , s ) 1 e H p * p 1 ( s , τ ) f p * p 1 ( τ , y ( τ ) ) d τ τ d s s       1 e G p * ( t , s ) 1 e H p * p 1 ( s , τ ) a 2 y p 1 ( τ ) + l 1 p * p 1 d τ τ d s s .
Then from (H4) we have
a 2 p * p 1 2 p * p 1 1 M 0 Γ ( β ) p * 1 e 1 e H p * p 1 ( s , τ ) σ p * ( τ ) d τ τ d s s < 1 ,
and hence there is a M 1 > ε 1 and
M 1 M 0 Γ ( β ) p * 2 p * p 1 1 l 1 p * p 1 1 e 1 e H p * p 1 ( s , τ ) d τ τ d s s 1 a 2 p * p 1 2 p * p 1 1 M 0 Γ ( β ) p * 1 e 1 e H p * p 1 ( s , τ ) σ p * ( τ ) d τ τ d s s p * ,
such that
[ ( A M 1 σ ) ( t ) ] p * 1 e G p * ( t , s ) 1 e H p * p 1 ( s , τ ) a 2 M 1 p 1 σ p 1 ( τ ) + l 1 p * p 1 d τ τ d s s      1 e G p * ( t , s ) 1 e H p * p 1 ( s , τ ) 2 p * p 1 1 a 2 p * p 1 M 1 p * σ p * ( τ ) + l 1 p * p 1 d τ τ d s s        1 e M 0 Γ ( β ) p * σ p * ( t ) 1 e H p * p 1 ( s , τ ) 2 p * p 1 1 a 2 p * p 1 M 1 p * σ p * ( τ ) + l 1 p * p 1 d τ τ d s s     = M 1 p * σ p * ( t ) · a 2 p * p 1 2 p * p 1 1 M 0 Γ ( β ) p * 1 e 1 e H p * p 1 ( s , τ ) σ p * ( τ ) d τ τ d s s    + σ p * ( t ) · M 0 Γ ( β ) p * 2 p * p 1 1 l 1 p * p 1 1 e 1 e H p * p 1 ( s , τ ) d τ τ d s s M 1 p * σ p * ( t ) .
This implies that
A M 1 σ M 1 σ .
Iin Lemma 4 we put D = [ ε 1 σ , M 1 σ ] , and from (H5) we have that A is an increasing operator. Thus from Lemma 4, A has the smallest fixed point y * * and the largest fixed point y * * in D. That is, Equation (1) has two positive solutions y * * and y * * in D. Moreover, y * * = lim n A n ε 1 σ = lim n A n 1 ( A ε 1 σ ) and y * * = lim n A n M 1 σ = lim n A n 1 ( A M 1 σ ) . This completes the proof. ☐
Lemma 7.
Let P 0 = y P : y ( t ) ( β 2 ) κ * M 0 y , t [ κ 1 , κ 2 ] . Then A ( P ) P 0 , where κ 1 , κ 2 ( 1 , e ) with κ 1 < κ 2 , and κ * = min t [ κ 1 , κ 2 ] σ ( t ) > 0 .
Proof. 
For y P , from Lemm 3 (ii) we have
( A y ) ( t ) = 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      M 0 Γ ( β ) 1 e ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s ,
and
( A y ) ( t ) = 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      β 2 Γ ( β ) 1 e σ ( t ) ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      = β 2 M 0 σ ( t ) · M 0 Γ ( β ) 1 e ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s .
Therefore, we have
( A y ) ( t ) β 2 M 0 σ ( t ) A y , t [ 1 , e ] .
In particular, we have
( A y ) ( t ) ( β 2 ) κ * M 0 A y , t [ κ 1 , κ 2 ] .
This completes the proof. ☐
Let
I = [ κ 1 , κ 2 ] , ζ ( y ) = min t I y ( t ) , ϑ ( y ) = max t I y ( t ) , ξ ( y ) = max t [ 1 , e ] y ( t ) , and P ( ζ , r ) = { y P 0 : ζ ( y ) < r } ,
and
C = ( β 2 ) κ * Γ ( β ) 1 e ω ( s ) φ p 1 I H ( s , τ ) d τ τ d s s , D = M 0 Γ ( β ) 1 e ω ( s ) φ p 1 1 e H ( s , τ ) d τ τ d s s .
Theorem 2.
Suppose that (H1)–(H2) hold, and there exist positive constants 0 < μ < ν < r such that the function f satisfies the following conditions:
(H6)
f ( t , y ) > φ p μ C for t I and y ( β 2 ) κ * M 0 μ , μ ,
(H7)
f ( t , y ) < φ p ν D for t [ 1 , e ] and y 0 , ν M 0 ( β 2 ) κ * ,
(H8)
f ( t , y ) > φ p r C for t I and y r , r M 0 ( β 2 ) κ * .
Then (1) has at least two positive solutions y 1 and y 2 such that
μ < max t [ 1 , e ] y 1 ( t ) with max t I y 1 ( t ) < ν , ν < max t I y 2 ( t ) with min t I y 2 ( t ) < r .
Proof. 
Note that P 0 P , and from Lemma 7 we have A ( P 0 ) P 0 . From the definitions of ζ , ξ , ϑ , for each y P 0 we have
ζ ( y ) ϑ ( y ) ξ ( y ) , and y M 0 ( β 2 ) κ * min t I y ( t ) = M 0 ( β 2 ) κ * ζ ( y ) .
For every y P 0 , λ [ 0 , 1 ] we obtain
ϑ ( λ y ) = max t I λ y ( t ) = λ ϑ ( y ) , and ϑ ( 0 ) = 0 .
We first verify condition (iii) in Lemma 5. Since 0 P 0 and μ > 0 , P ( ξ , μ ) . Note from y P ( ξ , μ ) ,i.e., y = μ , and thus ( β 2 ) κ * M 0 μ y ( t ) μ for t I . Therefore, using (H6) we have
ξ ( A y ) = max t [ 1 , e ] ( A y ) ( t )      = max t [ 1 , e ] 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      max t [ 1 , e ] β 2 Γ ( β ) 1 e σ ( t ) ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      max t I β 2 Γ ( β ) 1 e σ ( t ) ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      min t I β 2 Γ ( β ) 1 e σ ( t ) ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      > ( β 2 ) κ * Γ ( β ) 1 e ω ( s ) φ p 1 I H ( s , τ ) φ p μ C d τ τ d s s      = μ C ( β 2 ) κ * Γ ( β ) 1 e ω ( s ) φ p 1 I H ( s , τ ) d τ τ d s s      = μ .
We next show condition (ii) in Lemma 5 is true. Since y P ( ϑ , ν ) , then 0 y ( t ) y ν M 0 ( β 2 ) κ * for t [ 1 , e ] . Consequently, from (H7) we obtain
ϑ ( A y ) = max t I ( A y ) ( t )      = max t I 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      M 0 Γ ( β ) 1 e ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      < M 0 Γ ( β ) 1 e ω ( s ) φ p 1 1 e H ( s , τ ) φ p ν D d τ τ d s s      = ν D M 0 Γ ( β ) 1 e ω ( s ) φ p 1 1 e H ( s , τ ) d τ τ d s s      = ν .
Finally, we show condition (i) in that Lemma 5 holds. Since y P ( ζ , r ) , i.e., min t I y ( t ) = r , and thus r y ( t ) y r M 0 ( β 2 ) κ * for t I . Hence, (H8) implies that
ζ ( A y ) = min t I ( A y ) ( t )      = min t I 1 e G ( t , s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      min t I β 2 Γ ( β ) 1 e σ ( t ) ω ( s ) φ p 1 1 e H ( s , τ ) f ( τ , y ( τ ) ) d τ τ d s s      > ( β 2 ) κ * Γ ( β ) 1 e ω ( s ) φ p 1 I H ( s , τ ) φ p r C d τ τ d s s      = r C ( β 2 ) κ * Γ ( β ) 1 e ω ( s ) φ p 1 I H ( s , τ ) d τ τ d s s      = r .
This completes the proof. ☐

4. Conclusions

In this paper, we first used the monotone iterative technique to show that (1) has two positive solutions, and we established iterative formulas for the two solutions when the nonlinearity f grows ( p 1 ) -sublinearly. Next, using the Avery–Henderson fixed point theorem, we showed that (1) has two positive solutions under some appropriate conditions on the nonlinearity f.

Author Contributions

Conceptualization, J.J., J.X. and D.O..; methodology, J.J., J.X. and D.O.; software, J.J.; validation, J.J., J.X. and D.O.; formal analysis, J.J., J.X. and D.O.; investigation, J.J., J.X. and D.O.; resources, J.X.; data curation, J.X.; writing original draft preparation, J.J., J.X. and D.O.; writing review and editing, J.J., J.X. and D.O..; visualization, J.X.; supervision, J.X. and D.O.; project administration, J.X.; funding acquisition, J.X.. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by Talent Project of Chongqing Normal University (02030307-0040), China Postdoctoral Science Foundation (Grant No. 2019M652348), Technology Research Foundation of Chongqing Educational Committee(Grant No. KJQN201900539), Natural Science Foundation of Chongqing Normal University (Grant No. 16XYY24).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
  2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  3. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
  4. Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Heidelberg, Germany, 2010. [Google Scholar]
  5. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: New York City, NY, USA, 2017. [Google Scholar]
  6. Diethelm, K.; Ford, N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154, 621–640. [Google Scholar] [CrossRef]
  7. Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 2010, 59, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
  8. Luchko, Y. Fractional wave equation and damped waves. J. Math. Phys. 2013, 54, 031505. [Google Scholar] [CrossRef] [Green Version]
  9. Luchko, Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12, 409–422. [Google Scholar]
  10. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
  11. Kilbas, A.A.; Bonilla, B.; Trujillo, J.J. Existence and uniqueness theorems for nonlinear fractional differential equations. Demonstratio Math. 2000, 33, 583–602. [Google Scholar] [CrossRef]
  12. Kilbas, A.A.; Trujillo, J.J. Differential equations of fractional order: Methods, results and problems-I. Appl. Anal. 2001, 78, 153–192. [Google Scholar] [CrossRef]
  13. Kilbas, A.A.; Trujillo, J.J. Differential equations of fractional order: Methods, results and problems-II. Appl. Anal. 2002, 81, 435–493. [Google Scholar] [CrossRef]
  14. Xu, X.; Jiang, D.; Yuan, C. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 2009, 71, 4676–4688. [Google Scholar] [CrossRef]
  15. Hao, X.; Wang, H.; Liu, L.; Cui, Y. Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, 2017, 182. [Google Scholar] [CrossRef] [Green Version]
  16. Dong, X.; Bai, Z.; Zhang, S. Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, 2017, 5. [Google Scholar] [CrossRef] [Green Version]
  17. Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 2018, 82. [Google Scholar] [CrossRef] [Green Version]
  18. Cheng, W.; Xu, J.; O’Regan, D.; Cui, Y. Positive solutions for a nonlinear discrete fractional boundary value problem with a p-Laplacian operator. J. Anal. Appl. Comput. 2019, 9, 1959–1972. [Google Scholar]
  19. Ahmad, B.; Ntouyas, S.K. On Hadamard fractional integro-differential boundary value problems. J. Appl. Math. Comput. 2015, 47, 119–131. [Google Scholar] [CrossRef]
  20. Wang, T.; Wang, G.; Yang, X. On a Hadamard-type fractional turbulent flow model with deviating arguments in a porous medium. Nonlinear Anal. Model. Control 2017, 22, 765–784. [Google Scholar] [CrossRef]
  21. Wang, G.; Ren, X.; Zhang, L.; Ahmad, B. Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model. IEEE Access 2019, 7, 109833–109839. [Google Scholar] [CrossRef]
  22. Zhang, K.; Wang, J.; Ma, W. Solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations. J. Funct. Spaces 2018, 2018, 2193234. [Google Scholar] [CrossRef]
  23. Jiang, J.; O’Regan, D.; Xu, J.; Cui, Y. Positive solutions for a Hadamard fractional p-Laplacian three-point boundary value problem. Mathematics 2019, 7, 439. [Google Scholar] [CrossRef] [Green Version]
  24. Zhang, H.; Li, Y.; Xu, J. Positive solutions for a system of fractional integral boundary value problems involving Hadamard-type fractional derivatives. Complexity 2019, 2019, 2671539. [Google Scholar] [CrossRef]
  25. Ding, Y.; Jiang, J.; O’Regan, D.; Xu, J. Positive solutions for a system of Hadamard-type fractional differential equations with semipositone nonlinearities. Complexity 2020, 2020, 9742418. [Google Scholar] [CrossRef]
  26. Jiang, J.; O’Regan, D.; Xu, J.; Fu, Z. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. J. Inequal. Appl. 2019, 2019, 204. [Google Scholar] [CrossRef] [Green Version]
  27. Zhang, K.; Fu, Z. Solutions for a class of Hadamard fractional boundary value problems with sign-changing nonlinearity. J. Funct. Spaces 2019, 2019, 9046472. [Google Scholar] [CrossRef]
  28. Zhai, C.; Wang, W.; Li, H. A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions. J. Inequal. Appl. 2018, 2018, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  29. Riaz, U.; Zada, A.; Ali, Z.; Ahmad, M.; Xu, J.; Fu, Z. Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives. Math. Probl. Eng. 2019, 2019, 5093572. [Google Scholar] [CrossRef]
  30. Riaz, U.; Zada, A.; Ali, Z.; Cui, Y.; Xu, J. Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv. Differ. Equ. 2019, 2019, 226. [Google Scholar] [CrossRef]
  31. Leibenson, L.S. General problem of the movement of a compressible fluid in porous medium. Izv. Akad. Nauk SSSR 1945, 9, 7–10. [Google Scholar]
  32. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
  33. Avery, R.I.; Henderson, J. Two positive fixed points of nonlinear operators on ordered Banach spaces. Commun. Appl. Nonlinear Anal. 2001, 8, 27–36. [Google Scholar]

Share and Cite

MDPI and ACS Style

Xu, J.; Jiang, J.; O’Regan, D. Positive Solutions for a Class of p-Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems. Mathematics 2020, 8, 308. https://doi.org/10.3390/math8030308

AMA Style

Xu J, Jiang J, O’Regan D. Positive Solutions for a Class of p-Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems. Mathematics. 2020; 8(3):308. https://doi.org/10.3390/math8030308

Chicago/Turabian Style

Xu, Jiafa, Jiqiang Jiang, and Donal O’Regan. 2020. "Positive Solutions for a Class of p-Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems" Mathematics 8, no. 3: 308. https://doi.org/10.3390/math8030308

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop