Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments
Abstract
:1. Introduction
- (P1)
- is a quotient of odd positive integers;
- (P2)
- (P3)
- and
- (P4)
- and
- (i)
- for
- (ii)
- has a continuous and nonpositive partial derivative on and there exist functions and such thatand
2. Some Auxiliary Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Elabbasy, E.M.; Cesarano, C.; Bazighifan, O.; Moaaz, O. Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation. Symmetry 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Kiguradze, I.T.; Chanturiya, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Kitamura, Y.; Kusano, T. Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Am. Math. Soc. 1980, 78, 64–68. [Google Scholar] [CrossRef]
- Philos, C.G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations. Bull. Acad. Pol. Sci. Sér. Sci. Math. 1981, 39, 61–64. [Google Scholar]
- Philos, C.G. On the existence of non-oscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Ladas, G.; Lakshmikantham, V.; Papadakis, L.S. Oscillations of Higher-Order Retarded Differential Equations Generated By the Retarded Arguments, Delay and Functional Differential Equations and their Applications; Academic Press: New York, NY, USA, 1972; pp. 219–231. [Google Scholar]
- Koplatadze, R.G.; Chanturija, T.A. Oscillating and monotone solutions of first-order differential equations with deviating argument. Differ. Uravn. 1982, 18, 1463–1465. (In Russian) [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay diferential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar]
- Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
- Baculikova, B.; Dzurina, J.; Li, T. Oscillation results for even-order quasi linear neutral functional differential equations. Electron. J. Difer. Equ. 2011, 2011, 1–9. [Google Scholar]
- Baculikova, B.; Dzurina, J. Oscillation theorems for higher order neutral diferential equations. Appl. Math. Comput. 2012, 219, 3769–3778. [Google Scholar]
- Bazighifan, O.; Cesarano, C. Some New Oscillation Criteria for Second-Order Neutral Differential Equations with Delayed Arguments. Mathematics 2019, 7, 619. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 336, 1–9. [Google Scholar]
- Liu, M.; Dassios, I.; Milano, F. On the Stability Analysis of Systems of Neutral Delay Differential Equations. Circuits Syst. Signal Process. 2019, 38, 1639–1653. [Google Scholar] [CrossRef] [Green Version]
- Elabbasy, E.M.; Hassan, T.S.; Moaaz, O. Oscillation behavior of second-order nonlinear neutral differential equations with deviating arguments. Opusc. Math. 2012, 32, 719–730. [Google Scholar] [CrossRef]
- Li, T.; Han, Z.; Zhao, P.; Sun, S. Oscillation of even-order neutral delay differential equations. Adv. Differ. Equ. 2010, 2010, 184180. [Google Scholar] [CrossRef]
- Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. Adv. Differ. Equ. 2019, 2019, 484. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 297, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Awrejcewicz, J.; Bazighifan, O. A New Approach in the Study of Oscillation Criteria of Even-Order Neutral Differential Equations. Mathematics 2020, 2020, 179. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; El-Nabulsi, R.; Bazighifan, O. Oscillatory behavior of fourth-order differential equations with neutral delay. Symmetry 2020, 12, 371. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Shaaban, E. Oscillation criteria for a class of third order damped differential equations. Arab. J. Math. Sci. 2018, 24, 16–30. [Google Scholar] [CrossRef]
- Parhi, N.; Tripathy, A. On oscillatory fourth order linear neutral differential equations-I. Math. Slovaca 2004, 54, 389–410. [Google Scholar]
- Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. Adv. Differ. Equ. 2017, 2017, 261. [Google Scholar] [CrossRef] [Green Version]
- Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi linear neutral differential equations. Adv. Differ. Equ. 2011, 2011, 45. [Google Scholar] [CrossRef] [Green Version]
- Zafer, A. Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 1998, 11, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yan, J. Oscillation behavior of even order neutral differential equations with variable coefficients. Appl. Math. Lett. 2006, 19, 1202–1206. [Google Scholar] [CrossRef] [Green Version]
- Braverman, E.; Karpuz, B. On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 2011, 218, 3880–3887. [Google Scholar] [CrossRef]
- Pao, B.M.; Liu, C.; Yin, G. Topics in Stochastic Analysis and Nonparametric Estimation; Science Business Media: New York, NY, USA, 2008. [Google Scholar]
- Kolmanovskii, V.B.; Nosov, V.R. Stability and Periodic Modes of Control Systems with Aftereffect; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Gopalsamy, K.; Zhang, B. On a neutral delay-logistic equation. Dyn. Stab. Syst. 1987, 2, 183. [Google Scholar] [CrossRef]
- Bellen, N.G.A.; Ruehli, A. Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 1, 212. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics 2020, 8, 412. https://doi.org/10.3390/math8030412
Moaaz O, Dassios I, Bazighifan O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics. 2020; 8(3):412. https://doi.org/10.3390/math8030412
Chicago/Turabian StyleMoaaz, Osama, Ioannis Dassios, and Omar Bazighifan. 2020. "Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments" Mathematics 8, no. 3: 412. https://doi.org/10.3390/math8030412
APA StyleMoaaz, O., Dassios, I., & Bazighifan, O. (2020). Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics, 8(3), 412. https://doi.org/10.3390/math8030412