Long-Range Correlations and Characterization of Financial and Volcanic Time Series
Abstract
:1. Introduction
2. Variance Scaling Methods
2.1. Rescaled Range Analysis
2.2. Detrended Fluctuation Analysis
2.3. Diffusion Entropy Analysis
2.4. Estimation Procedure
The Shannon Entropy
- The time series data is first transformed into a diffusion process.
- Shannon’s entropy of the diffusion process is calculated. A log-linear equation or log-quadratic equation is derived from the Shannon entropy by substituting Equations (3) and (4) respectively. Simplifying the result from the substitutions, we have the following relation for stationary time series:For the non-stationary series, the relation is as follows:Thus (or is derived by an estimation of the slope of the above linear-log equation or by the coefficients from the quadratic-log equation. For details of the algorithm used when transforming the series into a diffusion process, we refer the reader to Reference [7].
3. Financial and Volcanic Time Series
3.1. Financial Time Series
3.2. Volcanic Time Series
3.3. Stationarity of the Financial and Volcanic Time Series
3.3.1. Augmented Dickey-Fuller
3.3.2. Financial Time Series
3.3.3. Volcanic Time Series
4. Results
Figures
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://www.physionet.org/tutorials/fmnc/node5.html (accessed on 3 October 2019).
- Barany, E.; Beccar Varela, M.P.; Florescu, I.; Sengupta, I. Detecting market crashes by analysing long-memory effects using high-frequency data. Quant. Financ. 2012, 12, 623–634. [Google Scholar] [CrossRef]
- Mariani, M.C.; Liu, Y. Normalized truncated Lévy walks applied to the study of financial indices. Physica A 2007, 377, 590–598. [Google Scholar] [CrossRef]
- Qi, J.; Yang, H. Hurst exponents for short time series. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2011, 84, 066114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beccar-Varela, M.P.; Gonzales-Huizar, H.; Mariani, M.C.; Tweneboah, O.K. Lévy Flights and Wavelets Analysis of Volcano-Seismic Data. Pure Appl. Geophys. 2019, 177, 723–736. [Google Scholar] [CrossRef]
- Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. SIGIR 2018, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Scafetta, N. An Entropic Approach to the Analysis of Time Series. Ph.D. Thesis, University of North Texas, Denton, TX, USA, 2001. [Google Scholar]
- Scafetta, N.; Grigolini, P. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E Stat. Nonliner Soft Matter Phys. 2002, 66, 036130. [Google Scholar] [CrossRef] [Green Version]
- Scafetta, N.; Latora, V.; Grigolini, P. Lévy scaling: The diffusion entropy analysis applied to DNA sequences. Phys. Rev. E Stat. Nonliner Soft Matter Phys. 2002, 66, 031906. [Google Scholar] [CrossRef] [Green Version]
- Morariu, V.V.; Buimaga-Iarinca, L.; Vamoș, C.; Șoltuz, Ș.M. Detrended fluctuation analysis of autoregressive processes. Fluct. Noise Lett. 2007, 7, L249–L255. [Google Scholar] [CrossRef] [Green Version]
- Mariani, M.C.; Tweneboah, O.K. Stochastic differential equations applied to the study of geophysical and financial time series. Physica A 2016, 443, 170–178. [Google Scholar] [CrossRef]
- Krištoufek, L. Rescaled range analysis and Detrended Fluctuation Analysis: Finite sample properties and confidence intervals. Czech Econ. Rev. 2010, 4, 315–329. [Google Scholar]
- Huang, J.; Shang, P.; Zhao, X. Multifractal diffusion entropy analysis on stock volatility in financial markets. Physica A 2012, 391, 5739–5745. [Google Scholar] [CrossRef]
- Haubold, A.; Haubold, H.J.; Kumar, D. Heliosheath: Diffusion Entropy Analysis and Nonextensivity q-triplet. arXiv 2012, arXiv:1202.3417. [Google Scholar]
- Brooks, C. A measure of persistence in daily pound exchange rates. Appl. Econ. Lett. 1995, 2, 428–431. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Rescaled_range (accessed on 10 October 2019).
- Available online: http://fusionwiki.ciemat.es/wiki/Long-range_correlation (accessed on 10 October 2019).
- Available online: http://www.ueltschi.org/teaching/chapShannon.pdf (accessed on 15 October 2019).
- Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Eng. 1951, 116, 770–799. [Google Scholar]
- Timothy, G.; Robert, G.B.; Nicholas, W.; Franzke, C. A brief history of long memory: Hurst, Mandelbrot and the road to ARFIMA. Entropy 2016, 19, 437. [Google Scholar]
- Peng, C.K.; Sergey, V.B.; Shlomo, H.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 1994, 49, 1685. [Google Scholar] [CrossRef] [Green Version]
- Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Mantegna, R.N.; Matsa, M.E.; Peng, C.K.; Simons, M.; Stanley, H.E. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 1995, 51, 5084. [Google Scholar] [CrossRef]
- Heneghan, C.; McDarby, G. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2000, 62, 6103. [Google Scholar] [CrossRef] [Green Version]
- Siwy, Z.; Ausloos, M.; Ivanova, K. Correlation studies of open and closed state fluctuations in an ion channel: Analysis of ion current through a large-conductance locust potassium channel. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2000, 65, 031907. [Google Scholar] [CrossRef] [Green Version]
- Janosi, I.M.; Muller, R. Empirical mode decomposition and correlation properties of long daily ozone records. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005, 71, 056126. [Google Scholar] [CrossRef] [Green Version]
- Santhanam, M.S.; Bandyopadhyay, J.N.; Angom, D. Quantum spectrum as a time series: Fluctuation measures. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 73, 015201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talkner, P.; Lutz, E.; Hänggi, P. Fluctuation theorems: Work is not an observable. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2007, 75, 032903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Entropy.pdf (accessed on 10 October 2019).
- Mariani, M.C.; Bhuiyan, M.A.M.; Tweneboah, O.K.; Gonzalez-Huizar, H.; Florescu, I. Volatility models applied to geophysics and high frequency financial market data. Physica A 2018, 503, 304–321. [Google Scholar] [CrossRef] [Green Version]
- Mariani, M.C.; Bhuiyan, M.A.M.; Tweneboah, O.K. Estimation of stochastic volatility by using Ornstein–Uhlenbeck type models. Physica A 2018, 491, 167–176. [Google Scholar] [CrossRef]
Market | p-Value |
---|---|
BVSP | 0.015 |
SPC | 0.034 |
HSI | 0.033 |
IGPA | 0.03 |
MERV | 0.014 |
MXX | 0.024 |
Nasdaq | 0.04 |
PSI | <0.01 |
SETI | <0.01 |
SP500 | <0.01 |
XU100 | 0.01 |
Eruption Number | p-Value |
---|---|
1 | 0.3568 |
2 | 0.6747 |
3 | 0.3024 |
4 | 0.095 |
5 | 0.2064 |
6 | 0.3271 |
7 | 0.2374 |
8 | 0.4059 |
Market | R/S(H) | DFA () | DEA () | (R/S) | (DFA) |
---|---|---|---|---|---|
BVSP | 0.59 | 0.72 | 0.57 | 0.56 | 0.63 |
SPC | 0.59 | 0.62 | 0.60 | 0.56 | 0.56 |
HSI | 0.65 | 0.7 | 0.60 | 0.56 | 0.63 |
IGPA | 0.74 | 0.65 | 0.53 | 0.63 | 0.56 |
MERV | 0.62 | 0.62 | 0.56 | 0.56 | 0.56 |
MXX | 0.64 | 0.66 | 0.59 | 0.56 | 0.56 |
Nasdaq | 0.6 | 0.72 | 0.56 | 0.56 | 0.56 |
PSI | 0.66 | 0.71 | 0.55 | 0.63 | 0.56 |
SETI | 0.64 | 0.70 | 0.54 | 0.56 | 0.56 |
SP500 | 0.63 | 0.66 | 0.65 | 0.58 | 0.60 |
XU100 | 0.64 | 0.70 | 0.54 | 0.56 | 0.56 |
Eruption Number | R/S(H) | DFA () | DEA () | (R/S) | (DFA) |
---|---|---|---|---|---|
1 | 0.45 | 0.74 | 0.6837 | 0.4756 | 0.6547 |
2 | 0.51 | 0.92 | 0.6837 | 0.5093 | 0.8682 |
3 | 0.38 | 0.85 | 0.6837 | 0.4472 | 0.7636 |
4 | 0.39 | 0.66 | 0.6837 | 0.4509 | 0.5957 |
5 | 0.39 | 0.76 | 0.6837 | 0.4513 | 0.6729 |
6 | 0.37 | 0.67 | 0.6837 | 0.4433 | 0.6002 |
7 | 0.42 | 0.81 | 0.6837 | 0.4634 | 0.7194 |
8 | 0.504 | 0.75 | 0.6837 | 0.5018 | 0.6684 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, M.C.; Asante, P.K.; Bhuiyan, M.A.M.; Beccar-Varela, M.P.; Jaroszewicz, S.; Tweneboah, O.K. Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics 2020, 8, 441. https://doi.org/10.3390/math8030441
Mariani MC, Asante PK, Bhuiyan MAM, Beccar-Varela MP, Jaroszewicz S, Tweneboah OK. Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics. 2020; 8(3):441. https://doi.org/10.3390/math8030441
Chicago/Turabian StyleMariani, Maria C., Peter K. Asante, Md Al Masum Bhuiyan, Maria P. Beccar-Varela, Sebastian Jaroszewicz, and Osei K. Tweneboah. 2020. "Long-Range Correlations and Characterization of Financial and Volcanic Time Series" Mathematics 8, no. 3: 441. https://doi.org/10.3390/math8030441
APA StyleMariani, M. C., Asante, P. K., Bhuiyan, M. A. M., Beccar-Varela, M. P., Jaroszewicz, S., & Tweneboah, O. K. (2020). Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics, 8(3), 441. https://doi.org/10.3390/math8030441