Tempered Fractional Integral Inequalities for Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Particular Cases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Machado, J.T.; Galhano, A.M.; Trujillo, J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Bhatter, S.; Mathur, A.; Kumar, D.; Nisar, K.S.; Singh, J. Fractional modified Kawahara equation with Mittag–Leffler law. Chaos. Solitons Fractals 2019. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Sarivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equation; North-Holland Mathematics Studies; Elsevier Sciences B.V.: Amsterdam, The Netherland, 2006. [Google Scholar]
- Kumar, S.; Nisar, K.S.; Kumar, R.; Cattani, C.; Samet, B. A new Rabotnov fractional-exponential function based fractional derivative for diffusion equation under external force. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Singh, J.; Kumar, R.; Nisar, K.S.; Kumar, D. An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-Cells with the effect of antiviral drug therapy. Alex. Eng. J. 2019. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Momani, S.; Aldhaifalla, M.; Nisar, K.S. Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. Adv. Differ. Equ. 2019, 2019, 413. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Tanwar, K.; Baleanu, D. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws. Int. J. Heat Mass Transf. 2019, 138, 1222–1227. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D. On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Methods Appl. Sci. 2019. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Abbas, S.; Al Qurashi, M.; Baleanu, D. A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations. Adv. Differ. Equ. 2020, 28. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Nikol’skǐ, S.M., Ed.; Translated from the 1987 Russian Original, Revised by the Authors; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Sharma, B.; Kumar, S.; Cattani, C.; Baleanu, D. Nonlinear dynamics of Cattaneo-Christov heat ux model for third-grade power-law fuid. J. Comput. Nonlinear Dyn. 2019. [Google Scholar] [CrossRef]
- Abro, K.A.; Gomez-Aguilar, J.F.; Khan, I.; Nisar, K.S. Role of modern fractional derivatives in an armaturecontrolled DC servomotor. Eur. Phys. J. Plus 2019, 134, 553. [Google Scholar] [CrossRef]
- Ali, F.; Iftikhar, M.; Khan, I.; Sheikh, N.A.; Nisar, K.S. Time fractional analysis of electro-osmotic flow of Walters’s-B fluid with time-dependent temperature and concentration. Alex. Eng. J. 2019. [Google Scholar] [CrossRef]
- Long, G.; Liu, S.; Xu, G.; Wong, S.W.; Chen, H.; Xiao, B. A perforation-erosion model for hydraulic-fracturing applications. SPE Prod. Oper. 2018, 33, 770–783. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019, 349, 92–98. [Google Scholar] [CrossRef]
- Xiao, B.; Zhang, X.; Jiang, G.; Long, G.; Wang, W.; Zhang, Y.; Liu, G. Kozeny-Carman constant for gas flow through fibrous porous media by fractal-Monte Carlo simulations. Fractals 2019, 27, 1950062. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Conformable Fractional Calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Anderson, D.R.; Ulness, D.J. Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 2015, 10, 109–137. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 2017, 78. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Baleanu, D. On Fractional Derivatives with Exponential Kernel and their Discrete Versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Dahmani, Z.; Tabharit, L. On weighted Grüss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2010, 2, 31–38. [Google Scholar] [CrossRef]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Nisar, K.S.; Qi, F.; Rahman, G.; Mubeen, S.; Arshad, M. Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 2018, 135. [Google Scholar] [CrossRef] [Green Version]
- Nisar, K.S.; Rahman, G.; Choi, J.; Mubeen, S.; Arshad, M. Certain Gronwall type inequalities associated with Riemann–Liouville k- and Hadamard k-fractional derivatives and their applications. East Asian Math. J. 2018, 34, 249–263. [Google Scholar]
- Rahman, G.; Nisar, K.S.; Mubeen, S.; Choi, J. Certain Inequalities involving the (k,ρ)-fractional integral operator. Far East J. Math. Sci. (FJMS) 2018, 103, 1879–1888. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Dahmani, Z.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Set, E.; Tomar, M.; Sarikaya, M.Z. On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 2015, 269, 29–34. [Google Scholar] [CrossRef]
- Ngo, Q.A.; Dat, D.D.T.T.T.; Tuan, D.A. Notes on an integral inequality. J. Inequal. Pure Appl. Math. 2006, 7, 120. [Google Scholar]
- Liu, W.J.; Cheng, G.S.; Li, C.C. Further development of an open problem concerning an integral inequality. JIPAM J. Inequal. Pure Appl. Math. 2008, 9, 14. [Google Scholar]
- Liu, W.J.; Ngǒ, Q.A.; Huy, V.N. Several interesting integral inequalities. J. Math. Inequal. 2009, 3, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Bougoufa, L. An integral inequality similar to Qi inequality. JIPAM J. Inequal. Pure Appl. Math. 2005, 6, 27. [Google Scholar]
- Boukerrioua, K.; Lakoud, A.G. On an open question regarding an integral inequality. JIPAM J. Inequal. Pure Appl. Math. 2007, 8, 77. [Google Scholar]
- Dahmani, Z.; Bedjaoui, N. Some generalized integral inequalities. J. Advan. Resea. Appl. Math. 2011, 3, 58–66. [Google Scholar] [CrossRef]
- Dahmani, Z.; Elard, H.M. Generalizations of some integral inequalities using Riemann–Liouville operator. Int. J. Open Probl. Compt. Math. 2011, 4, 40–46. [Google Scholar]
- Liu, W.J.; Li, C.C.; Dong, J.W. On an open problem concerning an integral inequality. JIPAM J. Inequal. Pure Appl. Math. 2007, 8, 74. [Google Scholar]
- Alzabut, J.; Abdeljawad, T.; Jarad, F.; Sudsutad, W. A Gronwall inequality via the generalized proportional fractional derivative with applications. J. Inequal. Appl. 2019, 2019, 101. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019. [Google Scholar] [CrossRef]
- Dahmani, Z. New classes of integral inequalities of fractional order. Le Matematiche 2014, 69, 237–247. [Google Scholar] [CrossRef]
- Huang, C.J.; Rahman, G.; Nisar, K.S.; Ghaffar, A.; Qi, F. Some Inequalities of Hermite-Hadamard type for k-fractional conformable integrals. Aust. J. Math. Anal. Appl. 2019, 16, 1–9. [Google Scholar]
- Nisar, K.S.; Rahman, G.; Mehrez, K. Chebyshev type inequalities via generalized fractional conformable integrals. J. Inequal. Appl. 2019, 2019, 245. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Rahman, G.; Hussain, S.M.; Du, W.S.; Nisar, K.S. Some inequalities of Čebyšev type for conformable k-fractional integral operators. Symmetry 2018, 10, 614. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K.S. Certain Chebyshev type inequalities involving fractional conformable integral operators. Mathematics 2019, 7, 364. [Google Scholar] [CrossRef] [Green Version]
- Niasr, K.S.; Tassadiq, A.; Rahman, G.; Khan, A. Some inequalities via fractional conformable integral operators. J. Inequal. Appl. 2019, 2019, 217. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Qi, F. Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Math. 2018, 3, 575–583. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Ghaffar, A.; Qi, F. Some inequalities of the Grüss type for conformable k-fractional integral operators. RACSAM 2020. [Google Scholar] [CrossRef]
- Rahman, G.; Abdeljawad, T.; Khan, A.; Nisar, K.S. Some fractional proportional integral inequalities. J. Inequal. Appl. 2019, 2019, 244. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2019, 2019, 454. [Google Scholar] [CrossRef]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Nisar, K.S. Bounds of generalized proportional fractional integrals in general form via convex functions and their applications. Mathematics 2020, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A.; Rahman, G.; Nisar, K.S.; Samraiz, M. Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals. Adv. Differ. Equ. 2020, 2020, 96. [Google Scholar] [CrossRef]
- Nisar, K.S.; Rahman, G.; Khan, A. Some new inequalities for generalized fractional conformable integral operators. Adv. Differ. Equ. 2019, 2019, 427. [Google Scholar] [CrossRef] [Green Version]
- Nisar, K.S.; Rahman, G.; Tassaddiq, A.; Khan, A.; Abouzaid, M.S. Certain generalized fractional integral inequalities. AIMS Math. 2020, 5, 1588–1602. [Google Scholar] [CrossRef]
- Buschman, R.G. Decomposition of an integral operator by use of Mikusenski calculus. SIAM J. Math. Anal. 1972, 3, 83–85. [Google Scholar] [CrossRef]
- Li, C.; Deng, W.; Zhao, L. Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Discret. Contin. Dyn. Syst.-B 2019, 24, 1989–2015. [Google Scholar]
- Meerschaert, M.M.; Sabzikar, F.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar]
- Fernandez, A.; Ustaǧlu, C. On some analytic properties of tempered fractional calculus. J. Comput. Appl. Math. 2019. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z. A note on some new fractional results involving convex functions. Acta Math. Univ. Comen. 2012, 80, 241–246. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, G.; Nisar, K.S.; Abdeljawad, T. Tempered Fractional Integral Inequalities for Convex Functions. Mathematics 2020, 8, 500. https://doi.org/10.3390/math8040500
Rahman G, Nisar KS, Abdeljawad T. Tempered Fractional Integral Inequalities for Convex Functions. Mathematics. 2020; 8(4):500. https://doi.org/10.3390/math8040500
Chicago/Turabian StyleRahman, Gauhar, Kottakkaran Sooppy Nisar, and Thabet Abdeljawad. 2020. "Tempered Fractional Integral Inequalities for Convex Functions" Mathematics 8, no. 4: 500. https://doi.org/10.3390/math8040500
APA StyleRahman, G., Nisar, K. S., & Abdeljawad, T. (2020). Tempered Fractional Integral Inequalities for Convex Functions. Mathematics, 8(4), 500. https://doi.org/10.3390/math8040500