An Improved Criterion for the Oscillation of Fourth-Order Differential Equations
Abstract
:1. Introduction
- and are quotient of odd positive integers;
- , , and under the condition
- , , ;
- , , .
- (i)
- for
- (ii)
- exists on and it is continuous and non-positive. Moreover, there exist three functions and such that
The condition | (6) | (7) |
The criterion | q0 > 1839.2 | q0 > 59.5 |
2. Oscillation Criteria
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. Symmetry 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Baculikova, B.; Dzurina, J.; Li, T. Oscillation results for even-order quasi linear neutral functional differential equations. Electron. J. Differ. Equ. 2011, 2011, 1–9. [Google Scholar]
- Bazighifan, O.; Postolache, M. Improved Conditions for Oscillation of Functional Nonlinear Differential Equations. Mathematics 2020, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Cesarano, C. Some New Oscillation Criteria for Second-Order Neutral Differential Equations with Delayed Arguments. Mathematics 2019, 7, 619. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Benia, Y.; Ruggieri, M.; Scapellato, A. Exact Solutions for a Modified Schrödinger Equation. Mathematics 2019, 7, 908. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation. J. Inequal. Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Benia, Y.; Scapellato, A. Existence of solution to Korteweg-de Vries equation in a non-parabolic domain. Nonlinear Anal. 2020, 195, 111758. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 336, 1–9. [Google Scholar]
- Elabbasy, E.M.; Cesarano, C.; Bazighifan, O.; Moaaz, O. Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation. Symmetry 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. Symmetry 2020, 12, 555. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Kiguradze, I.T.; Chanturiya, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Moaaz, O.; El-Nabulsi, R.; Bazighifan, O. Oscillatory Behavior of Fourth-Order Differential Equations with Neutral Delay. Symmetry 2020, 12, 371. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. Adv. Differ. Equ. 2017, 261, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Furuichi, S.; Muhib, A. New Comparison Theorems for the Nth Order Neutral Differential Equations with Delay Inequalities. Mathematics 2020, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Awrejcewicz, J.; Bazighifan, O. A New Approach in the Study of Oscillation Criteria of Even-Order Neutral Differential Equations. Mathematics 2020, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Stepan, G.; Insperger, T. Saturation limits the contribution of acceleration feedback to balancing against reaction delay. J. R. Soc. Interface 2018, 15, 20170771. [Google Scholar] [CrossRef]
- Zhang, L.; Stepan, G. Exact stability chart of an elastic beam subjected to delayed feedback. J. Sound Vibr. 2016, 367, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Domoshnitsky, A.; Volinsky, I.; Levi, S.; Shemesh, S. Stability of third order neutral delay differential equations. AIP Conf. Proc. 2019, 2159, 020002. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Scapellato, A. Nonlinear Robin problems with general potential and crossing reaction. Rend. Lincei-Mat. Appl. 2019, 30, 1–29. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Scapellato, A. Constant sign and nodal solutions for parametric (p,2)-equations. Adv. Nonlinear Anal. 2020, 9, 449–478. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Scapellato, A. Positive solutions for (p,2)-equations with superlinear reaction and a concave boundary term. Electron. J. Qual. Theory Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Scapellato, A. Concave-Convex Problems for the Robin p-Laplacian Plus an Indefinite Potential. Mathematics 2020, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Fels, M.E. The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations. Trans. Amer. Math. Soc. 1996, 348, 5007–5029. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C.; Arthurs, A.M. On the inverse problem of calculus of variations for fourth-order equations. Proc. R. Soc. A 2010, 466, 2309–2323. [Google Scholar] [CrossRef]
- Parhi, N.; Tripathy, A. On oscillatory fourth order linear neutral differential equations-I. Math. Slovaca 2004, 54, 389–410. [Google Scholar]
- Philos, C.G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations. Bull. Acad. Pol. Sci. Sér. Sci. Math. 1981, 39, 61–64. [Google Scholar]
- Philos, C.G. On the existence of non-oscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Zafer, A. Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 1981, 11, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–308. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, J. Oscillation behavior of even order neutral differential equations with variable coefficients. Appl. Math. Lett. 2006, 19, 1202–1206. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. https://doi.org/10.3390/math8040610
Bazighifan O, Ruggieri M, Scapellato A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics. 2020; 8(4):610. https://doi.org/10.3390/math8040610
Chicago/Turabian StyleBazighifan, Omar, Marianna Ruggieri, and Andrea Scapellato. 2020. "An Improved Criterion for the Oscillation of Fourth-Order Differential Equations" Mathematics 8, no. 4: 610. https://doi.org/10.3390/math8040610
APA StyleBazighifan, O., Ruggieri, M., & Scapellato, A. (2020). An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics, 8(4), 610. https://doi.org/10.3390/math8040610