On the Reversibility of Discretization
Abstract
:1. Introduction
2. Motivation
2.1. Scale of Observation
2.2. Discretization versus Regularization
2.3. Regularization Methods
3. Notation
3.1. Fourier Transform
3.2. Sinc and Rect Functions
3.3. Finite, Entire, Local and Regular Functions
3.4. Localized Sinc, Regularized Rect, Unitary Functions and Dirac Comb
4. Preliminaries
5. Truncation
5.1. Sharp Truncation
5.2. Smooth Truncation
5.3. Four Truncation Rules
6. Representation Theorems
7. Wider Definitions
Convolution-Multiplication Associativity
8. Discussion and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Symbolic Calculation Rules
No | Rule | Remark | Operation | Result |
---|---|---|---|---|
01 | Synthesis of = Analysis of 1 | Time-Truncation of 1 | finite | |
02 | Synthesis of = Analysis of | Band-Truncation of | entire | |
03 | Analysis of = Synthesis of 1 | Periodization of | periodic | |
04 | Analysis of = Synthesis of | Discretization of | discrete | |
05 | Rule 01 + Rule 03 | Restoration of 1 | periodic | |
06 | Rule 02 + Rule 04 | Restoration of | discrete | |
07 | Rule 03 + Rule 01 | Restoration of | finite | |
08 | Rule 04 + Rule 02 | Restoration of | entire |
No | Rule | Remark | Operation | Result |
---|---|---|---|---|
11 | Syn. of = Analysis of | Periodization of | periodic + discrete | |
12 | Syn. of = Analysis of 1 | Discretization of 1 | discrete + periodic | |
13 | Analysis of = Syn. of | Time-Truncation of | finite + discrete | |
14 | Analysis of = Syn. of 1 | Band-Truncation of | entire + periodic | |
15 | Rule 11 + Rule 13 | Restoration of | finite + discrete | |
16 | Rule 12 + Rule 14 | Restoration of 1 | entire + periodic | |
17 | Rule 13 + Rule 11 | Restoration of | periodic + discrete | |
18 | Rule 14 + Rule 12 | Restoration of | discrete + periodic |
No | Rule | Remark | Operation | Result |
---|---|---|---|---|
21 | Synthesis of p = Analysis of f | Periodization of f | periodic | |
22 | Synthesis of d = Analysis of | Discretization of | discrete | |
23 | Analysis of p = Synthesis of f | Time-Truncation of p | finite | |
24 | Analysis of d = Synthesis of | Band-Truncation of d | entire | |
25 | Rule 21 + Rule 23 | Restoration of p | periodic | |
26 | Rule 22 + Rule 24 | Restoration of d | discrete | |
27 | Rule 23 + Rule 21 | Restoration of f | finite | |
28 | Classical Sampling Theorem | Restoration of | entire |
Appendix B. The Condition
Appendix B.1. Time-Limited Functions
Appendix B.2. Band-Limited Functions
Appendix B.3. Periodic Functions
Appendix B.4. Discrete Functions
Appendix C. Image Scale
References
- Schwartz, L. Théorie des Distributions, Tome I-II; Hermann: Paris, France, 1951. [Google Scholar]
- Halperin, I.; Schwartz, L. Introduction to the Theory of Distributions; University of Toronto Press: Toronto, ON, Canada, 1952. [Google Scholar]
- Köthe, G. Die Randverteilungen analytischer Funktionen. Math. Z. 1952, 57, 13–33. [Google Scholar] [CrossRef]
- Köthe, G. Dualität in der Funktionentheorie. J. Angew. Math. 1953, 191, 30–49. [Google Scholar]
- König, H. Neue Begründung der Theorie der ”Distributionen” von L. Schwartz. Math. Nachr. 1953, 9, 129–148. [Google Scholar] [CrossRef]
- Temple, G. The Theory of Generalized Functions. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 228, 175–190. [Google Scholar]
- Lighthill, M.J. An Introduction to Fourier Analysis and Generalised Functions; Cambridge University Press: Cambridge, UK, 1958. [Google Scholar]
- Tillmann, H.G. Darstellung der Schwartzschen Distributionen durch analytische Funktionen. Math. Z. 1961, 77, 106–124. [Google Scholar] [CrossRef]
- Kaplan, W. Operational Methods for Linear Systems; Addison-Wesley Pub. Co.: Boston, MA, USA, 1962. [Google Scholar]
- Erdélyi, A. Operational Calculus and Generalized Functions; Holt, Rinehart and Winston, Inc.: New York, NY, USA, 1962. [Google Scholar]
- Friedman, A. Generalized Functions and Partial Differential Equations; Prentice Hall, Inc.: Eaglewood Cliffs, NJ, USA, 1963. [Google Scholar]
- Gel’fand, I.M.; Vilenkin, N.Y. Generalized Functions: Applications of Harmonic Analysis; Academic Press: New York, NY, USA, 1964; Volume 4. [Google Scholar]
- Bremermann, H. Distributions, Complex Variables, and Fourier Transforms; Addison-Wesley: Boston, MA, USA, 1965. [Google Scholar]
- Zemanian, A. Distribution Theory And Transform Analysis—An Introduction To Generalized Functions, with Applications; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Horváth, J. Topological Vector Spaces and Distributions; Addison-Wesley Publishing Company: Boston, MA, USA, 1966. [Google Scholar]
- Jones, D. The Theory of Generalized Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Trèves, F. Topological Vector Spaces, Distributions and Kernels: Pure and Applied Mathematics; Dover Publications Inc.: Mineola, NY, USA, 1967; Volume 25. [Google Scholar]
- Zemanian, A. An Introduction to Generalized Functions and the Generalized Laplace and Legendre Transformations. SIAM Rev. 1968, 10, 1–24. [Google Scholar] [CrossRef]
- Zemanian, A.H. Generalized Integral Transformations; Dover Publications, Inc.: Mineola, NY, USA, 1968. [Google Scholar]
- Donoghue, W.F. Distributions and Fourier Transforms; Academic Press, Inc.: New York, NY, USA, 1969. [Google Scholar]
- Gelfand, I.; Schilow, G. Verallgemeinerte Funktionen (Distributionen), Teil I–II; Deutscher Verlag der Wissenschaften: Berlin, Germany, 1969. [Google Scholar]
- Ehrenpreis, L. Fourier Analysis in Several Complex Variables; Wiley-Interscience Publishers: New York, NY, USA, 1970. [Google Scholar]
- Vladimirov, V.S. Gleichungen der mathematischen Physik; Deutscher Verlag der Wissenschaften: Berlin, Germany, 1972. [Google Scholar]
- Barros-Neto, J. An Introduction to the Theory of Distributions; M. Dekker: New York, NY, USA, 1973. [Google Scholar]
- Beals, R. Advanced Mathematical Analysis: Periodic Functions and Distributions, Complex Analysis, Laplace Transform and Applications; Springer: New York, NY, USA; Heidelberg/Berlin, Germany, 1973; Volume 12. [Google Scholar]
- Lützen, J. The Prehistory of the Theory of Distributions; Volume Studies in the History of Mathematics and Physical Sciences 7; Springer: New York, NY, USA; Heidelberg/Berlin, Germany, 1982. [Google Scholar]
- Peterson, B.E. Introduction to the Fourier Transform and Pseudo-Differential Operatos; Piman Publishing: Boston, MA, USA; London, UK; Melbourne, Australia, 1983. [Google Scholar]
- Hörmander, L. The Analysis of Linear Partial Differential Operators I, Die Grundlehren der Mathematischen Wissenschaften; Springer: Heidelberg/Berlin, Germany, 1983. [Google Scholar]
- Oberguggenberger, M.B. Multiplication of Distributions and Applications to Partial Differential Equations; Longman Scientific & Technical: Harlow, Essex, UK, 1992; Volume 259. [Google Scholar]
- Walter, W. Einführung in die Theorie der Distributionen; BI-Wissenschaftsverlag, Bibliographisches Institut & FA Brockhaus: Mannheim, Germany, 1994. [Google Scholar]
- Hoskins, R.F.; Pinto, J.S. Distributions, Ultradistributions and other Generalized Fsunctions; Woodhead Publishing: Philadelphia, PA, USA, 1994. [Google Scholar]
- Zayed, A.I. Handbook of Function and Generalized Function Transformations; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Friedlander, F.G.; Joshi, M.S. Introduction to the Theory of Distributions; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Vladimirov, V.S. Methods of the Theory of Generalized Functions; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Strichartz, R.S. A Guide to Distribution Theory and Fourier Transforms; World Scientific: Singapore, 2003. [Google Scholar]
- Peters, K.H. Der Zusammenhang von Mathematik und Physik am Beispiel der Geschichte der Distributionen. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2003. [Google Scholar]
- Grubb, G. Distributions and Operators; Springer Science & Business Media: Heidelberg/Berlin, Germany, 2009; Volume 252. [Google Scholar]
- Rahman, M. Applications of Fourier Transforms to Generalized Functions; WIT Press: Southampton, UK, 2011. [Google Scholar]
- Pilipovic, S.; Stankovic, B.; Vindas, J. Asymptotic Behavior of Generalized Functions; World Scientific: Singapore, 2012; Volume 5. [Google Scholar]
- Debnath, L. Developments of the Theory of Generalized Functions or Distributions–A Vision of Paul Dirac. Anal. Int. Math. J. Anal. Appl. 2013, 33, 57–100. [Google Scholar] [CrossRef]
- Bargetz, C.; Ortner, N. Characterization of L. Schwartz’ Convolutor and Multiplier Spaces and by the Short-Time Fourier Transform. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2014, 108, 833–847. [Google Scholar] [CrossRef]
- Mangad, M. Asymptotic Expansions of Fourier Transforms and Discrete Polyharmonic Green’s Functions. Pac. J. Math. 1967, 20, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Bracewell, R.N. Fourier Transform and its Applications; McGraw-Hill Education: New York, NY, USA, 1986. [Google Scholar]
- Proakis, J.G. Digital Signal Processing: Principles, Algorithms and Applications, 2nd ed.; Pearson Education India: Bengaluru, India, 1992. [Google Scholar]
- Chandrasekharan, K. Classical Fourier Transforms; Springer: Heidelberg/Berlin, Germany, 1989. [Google Scholar]
- Zayed, A. Advances in Shannon’s Sampling Theory; CRC Press Inc.: Boca Raton, FL, USA, 1993. [Google Scholar]
- Benedetto, J.J. Harmonic Analysis and Applications; Birkhäuser: Boston, MA, USA, 1996; Volume 23. [Google Scholar]
- Brigola, R. Fourieranalysis, Distributionen und Anwendungen; Vieweg: Braunschweig, Germany, 1997. [Google Scholar]
- Gasquet, C.; Witomski, P. Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets; Springer Science & Business Media: Heidelberg/Berlin, Germany, 1999; Volume 30. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing; Pearson Education India: Bengaluru, India, 1999. [Google Scholar]
- Gröchenig, K. Foundations of Time-Frequency Analysis; Birkhäuser: Basel, Switzerland, 2001. [Google Scholar]
- Kammler, D.W. A First Course in Fourier Analysis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Benedetto, J.J.; Ferreira, P.J. Modern Sampling Theory: Mathematics and Applications; Springer Science & Business Media: Heidelberg/Berlin, Germany, 2012. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992; Volume 61. [Google Scholar]
- Mallat, S.; Hwang, W.L. Singularity Detection and Processing with Wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- Ashino, R.; Nagase, M.; Vaillancourt, R. Gabor, Wavelet and Chirplet Transforms in the Study of Pseudodifferential Operators. Surikaisekikenkyusho Kokyuroku 1998, 1036, 23–45. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: Burlington, MA, USA, 1999. [Google Scholar]
- Su, D.R. Mathematical Structure of the Periodic Hilbert Space and the One-Dimensional Structure Constants in the Green Function Method. Chin. Phys. 1969, 7, 76–85. [Google Scholar]
- Simon, B. Distributions and their Hermite expansions. J. Math. Phys. 1971, 12, 140–148. [Google Scholar] [CrossRef]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness; Academic Press: New York, NY, USA, 1975; Volume 2. [Google Scholar]
- Folland, G.B. Harmonic Analysis in Phase Space; Princeton University Press: Princeton, NJ, USA, 1989. [Google Scholar]
- Messiah, A. Quantum Mechanics—Two Volumes Bound as One; Dover Publications: New York, NY, USA, 2003. [Google Scholar]
- Glimm, J.; Jaffe, A. Quantum Physics: A Functional Integral Point of View; Springer Science & Business Media: Heidelberg/Berlin, Germany, 2012. [Google Scholar]
- Carfì, D. Quantum Operators and their Action on Tempered Distributions. Booklets Math. Inst. Fac. Econ. Univ. Messina 1996, 10, 1–20. [Google Scholar]
- Mund, J.; Schroer, B.; Yngvason, J. String-Localized Quantum Fields from Wigner Representations. Phys. Lett. B 2004, 596, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Carfì, D. S-Linear Algebra in Economics and Physics. Appl. Sci. 2007, 9, 48–66. [Google Scholar]
- Carfì, D. Spectral Expansion of Schwartz Linear Operators. arXiv 2011, arXiv:1104.3647. [Google Scholar]
- Campos, L.M.B.d.C. Generalized Calculus with Applications to Matter and Forces; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Sheppard, C.J.; Kou, S.S.; Lin, J. The Green-Function Transform and Wave Propagation. Front. Phys. 2014, 2, 67. [Google Scholar] [CrossRef] [Green Version]
- Bahns, D.; Doplicher, S.; Morsella, G.; Piacitelli, G. Quantum Spacetime and Algebraic Quantum Field Theory. In Advances in Algebraic Quantum Field Theory; Springer: Heidelberg/Berlin, Germany, 2015; pp. 289–329. [Google Scholar]
- Carfì, D. Motivations and Origins of Schwartz Linear Algebra in Quantum Mechanics. J. Math. Econ. Financ. 2016, 2, 67–76. [Google Scholar]
- Brouder, C.; Dang, N.V.; Laurent-Gengoux, C.; Rejzner, K. Properties of Field Functionals and Characterization of Local Functionals. J. Math. Phys. 2018, 59, 023508. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, C.; Humphries, T.; Plowman, H. Remarks on the Generalized Fractional Laplacian Operator. Mathematics 2019, 7, 320. [Google Scholar] [CrossRef] [Green Version]
- Alt, H. Lectures on Mathematical Continuum Mechanics; Lecture Notes; TUM Munich: Munich, Germany, 2020. [Google Scholar]
- Dierolf, P. The Structure Theorem for Linear Transfer Systems. Note Mat. 1991, 11, 119–125. [Google Scholar]
- Osgood, B. The Fourier Transform and its Applications; EE 261 Lecture Notes; Stanford University: Stanford, CA, USA, 2007. [Google Scholar]
- Süße, H.; Rodner, E. Bildverarbeitung und Objekterkennung; Springer: Heidelberg/Berlin, Germany, 2014. [Google Scholar]
- Smith, D.C. An Introduction to Distribution Theory for Signals Analysis. Digit. Signal Process. 2006, 16, 419–444. [Google Scholar] [CrossRef]
- Burger, W.; Burge, M.J. Digital Image Processing: An Algorithmic Introduction Using Java; Springer: Heidelberg/Berlin, Germany, 2016. [Google Scholar]
- Cwikel, M. A Quick Description for Engineering Students of Distributions (Generalized Functions) and their Fourier Transforms. arXiv 2018, arXiv:1810.05722. [Google Scholar]
- Ortigueira, M.D.; Machado, J.T. On the Properties of Some Operators under the Perspective of Fractional System Theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 105022. [Google Scholar] [CrossRef]
- Fischer, J.V. On the Duality of Discrete and Periodic Functions. Mathematics 2015, 3, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.V. On the Duality of Regular and Local Functions. Mathematics 2017, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.V. Four Particular Cases of the Fourier Transform. Mathematics 2018, 6, 335. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.V.; Stens, R.L. On Inverses of the Dirac Comb. Mathematics 2019, 7, 1196. [Google Scholar] [CrossRef] [Green Version]
- Friedrichs, K.O. On the Differentiability of the Solutions of Linear Elliptic Differential Equations. Commun. Pure Appl. Math. 1953, 6, 299–326. [Google Scholar] [CrossRef]
- Schechter, M. Modern Methods in Partial Differential Equations, An Introduction; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Hirsch, A.; Reichel, W. Real-valued, Time-Periodic Localized Weak Solutions for a Semilinear Wave Equation with Periodic Potentials. Nonlinearity 2019, 32, 1408. [Google Scholar] [CrossRef] [Green Version]
- Pelinovsky, D.E.; Simpson, G.; Weinstein, M.I. Polychromatic Solitary Waves in a Periodic and Nonlinear Maxwell System. SIAM J. Appl. Dyn. Syst. 2012, 11, 478–506. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.T.; Trujillo, J.J. Fractional Derivatives and Periodic Functions. Int. J. Dyn. Control 2017, 5, 72–78. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Two-sided and Regularised Riesz-Feller Derivatives. Math. Meth. Appl. Sci. 2019. [Google Scholar] [CrossRef]
- Sabatier, J.; Farges, C.; Tartaglione, V. Some Alternative Solutions to Fractional Models for Modelling Power Law Type Long Memory Behaviours. Mathematics 2020, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P. The Principles of Quantum Mechanics; Oxford University Press: New York, NY, USA, 1930. [Google Scholar]
- Córdoba, A. Dirac Combs. Lett. Math. Phys. 1989, 17, 191–196. [Google Scholar] [CrossRef]
- Campbell, L. Sampling Theorems for the Fourier Transform of a Distribution with Bounded Support. SIAM J. Appl. Math. 1968, 16, 626–636. [Google Scholar] [CrossRef]
- Stens, R.L. A Unified Approach to Sampling Theorems for Derivatives and Hilbert Transforms. Signal Process. 1983, 5, 139–151. [Google Scholar] [CrossRef]
- Dodson, M.; Silva, A. Fourier Analysis and the Sampling Theorem. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences; Royal Irish Academy: Dublin, Ireland, 1985; pp. 81–108. [Google Scholar]
- Butzer, P.; Splettstößer, W.; Stens, R. The Sampling Theorem and Linear Prediction in Signal Analysis. Jahresber. Der Dtsch. Math.-Ver. 1987, 90, 1–70. [Google Scholar]
- Butzer, P.L.; Stens, R.L. Sampling Theory for not Necessarily Band-limited Functions: A Historical Overview. SIAM Rev. 1992, 34, 40–53. [Google Scholar] [CrossRef]
- Higgins, J.R. Sampling Theory in Fourier and Signal Analysis: Foundations; Oxford University Press Inc.: New York, NY, USA, 1996. [Google Scholar]
- García, A.G.; Moro, J.; Hernández-Medina, M.A. On the Distributional Fourier Duality and its Applications. J. Math. Anal. Appl. 1998, 227, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.R.; Stens, R.L. Sampling Theory in Fourier and Signal Analysis: Advanced Topics; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Butzer, P.; Ferreira, P.; Higgins, J.; Schmeisser, G.; Stens, R. The Sampling Theorem, Poisson’s Summation Formula, General Parseval Formula, Reproducing Kernel Formula and the Paley–Wiener Theorem for Bandlimited Signals–their Interconnections. Appl. Anal. 2011, 90, 431–461. [Google Scholar] [CrossRef]
- Casey, S.D. Poisson Summation and Selberg Trace. In Proceedings of the 2017 International Conference on Sampling Theory and Applications (SampTA), Tallinn, Estonia, 3–7 July 2017; pp. 96–100. [Google Scholar]
- Führ, H.; Lemvig, J. System Bandwidth and the Existence of Generalized Shift-invariant Frames. J. Funct. Anal. 2019, 276, 563–601. [Google Scholar] [CrossRef] [Green Version]
- Sato, M. Theory of Hyperfunctions, I. J. Faculty Sci. Univ. Tokyo Sect. 1 Math. Astron. Phys. Chem. 1959, 8, 139–193. [Google Scholar]
- Sato, M. Theory of Hyperfunctions, II. J. Faculty Sci. Univ. Tokyo Sect. 1 Math. Astron. Phys. Chem. 1960, 8, 387–437. [Google Scholar]
- Morimoto, M. An Introduction to Sato’s Hyperfunctions; American Mathematical Soc.: Providence, RI, USA, 1993; Volume 129. [Google Scholar]
- Graf, U. Introduction to Hyperfunctions and Their Integral Transforms: An Applied and Computational Approach; Birkhäser, Springer: Basel, Switzerland, 2010. [Google Scholar]
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.Y.; Schweber, S.S. The Conceptual Foundations and the Philosophical Aspects of Renormalization Theory. Synthese 1993, 97, 33–108. [Google Scholar] [CrossRef]
- Huang, K. A Critical History of Renormalization. Int. J. Mod. Phys. A 2013, 28, 1330050. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote. Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Reigber, A.; Scheiber, R.; Jager, M.; Prats-Iraola, P.; Hajnsek, I.; Jagdhuber, T.; Papathanassiou, K.P.; Nannini, M.; Aguilera, E.; Baumgartner, S.; et al. Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications. Proc. IEEE 2012, 101, 759–783. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J. Traunstein, Synthetic Aperture Radar image. ResearchGate 2007. [Google Scholar] [CrossRef]
- Brenner, A.R.; Roessing, L. Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR. IEEE Trans. Geosci. Remote. Sens. 2008, 46, 2971–2982. [Google Scholar] [CrossRef]
- Fischer, J.; Molkenthin, T.; Chandra, M. A Direct Comparison of SAR Processing as Non-Orthogonal Transform to both Fourier and Wavelet Transform. In Proceedings of the Wave Propagation in Communication, Microwaves Systems and Navigation (WFMN), Chemnitz, Germany, 4–5 July 2007; pp. 91–96. [Google Scholar]
- Stankwitz, H.C.; Dallaire, R.J.; Fienup, J.R. Nonlinear Apodization for Sidelobe Control in SAR Imagery. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 267–279. [Google Scholar] [CrossRef]
- Jin, M.Y.; Cheng, F.; Chen, M. Chirp Scaling Algorithms for SAR Processing. In Proceedings of the IGARSS’93-IEEE International Geoscience and Remote Sensing Symposium, Piscataway, NJ, USA, 18–21 August 1993; pp. 1169–1172. [Google Scholar]
- Wu, C. A Digital System to Produce Imagery from SAR Data. In Proceedings of the AIAA Systems Design Driven by Sensors, Pasadena, CA, USA, 18–20 October 1976; pp. 76–968. [Google Scholar]
- Sarabandi, K.; Pierce, L.E.; Ulaby, F.T. Calibration of a Polarimetric Imaging SAR. IEEE Trans. Geosci. Remote. Sens. 1992, 30, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Pupeza, I.; Scheiber, R. Sidelobe Suppression Using the SVA Method for SAR Images and Sounding Radars. Image (t) 2006, 1, 1. [Google Scholar]
- Fischer, J.; Molkenthin, T.; Chandra, M. SAR Image Formation as Wavelet Transform. In Proceedings of the EUSAR, Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Danklmayer, A.; Doring, B.J.; Schwerdt, M.; Chandra, M. Assessment of Atmospheric Propagation Effects in SAR Images. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 3507–3518. [Google Scholar] [CrossRef]
- Pauli, W.; Villars, F. On the Invariant Regularization in Relativistic Quantum Theory. Rev. Mod. Phys. 1949, 21, 434. [Google Scholar] [CrossRef] [Green Version]
- t’ Hooft, G.; Veltman, M. Regularization and Renormalization of Gauge Fields. Nucl. Phys. B 1972, 44, 189–213. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.W.; Gu, Y. Conjugate Filter Approach for Solving Burgers’ Equation. J. Comput. Appl. Math. 2002, 149, 439–456. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.C. Truncated Singular Value Decomposition Solutions to Discrete Ill-posed Problems with Ill-determined Numerical Rank. SIAM J. Sci. Stat. Comput. 1990, 11, 503–518. [Google Scholar] [CrossRef]
- Hansen, P.C. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems. Numer. Algorithms 1994, 6, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, M.; Reigber, A.; Scheiber, R.; Prats-Iraola, P.; Moreira, A. Generation of Highly Accurate DEMs over Flat Areas by Means of Dual-Frequency and Dual-Baseline Airborne SAR Interferometry. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 4361–4390. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Time-Frequency Localization Operators: A Geometric Phase Space Approach. IEEE Trans. Inf. Theory 1988, 34, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I. The Photon Wave Function. In Coherence and Quantum Optics VII; Springer: Heidelberg/Berlin, Germany, 1996; pp. 313–322. [Google Scholar]
- Bialynicki-Birula, I. Exponential Localization of Photons. Phys. Rev. Lett. 1998, 80, 5247. [Google Scholar] [CrossRef]
- Brandolini, L.; Colzani, L. Localization and Convergence of Eigenfunction Expansions. J. Fourier Anal. Appl. 1999, 5, 431–447. [Google Scholar] [CrossRef]
- Cordero, E.; Gröchenig, K. Time–frequency Analysis of Localization Operators. J. Funct. Anal. 2003, 205, 107–131. [Google Scholar] [CrossRef]
- Boggiatto, P. Localization Operators with Lp Symbols on Modulation Spaces. In Advances in Pseudo-Differential Operators; Springer: Heidelberg/Berlin, Germany, 2004; pp. 149–163. [Google Scholar]
- Fu, C.L.; Zhang, Y.X.; Cheng, H.; Ma, Y.J. The a Posteriori Fourier Method for Solving Ill-Posed Problems. Inverse Probl. 2012, 28, 095002. [Google Scholar] [CrossRef]
- Hayashi, M. A Note on the Nonlinear Schrödinger Equation in a General Domain. Nonlinear Anal. 2018, 173, 99–122. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Fan, P.; Li, X.X. Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number. Mathematics 2019, 7, 705. [Google Scholar] [CrossRef] [Green Version]
- Duran, U.; Acikgoz, M. On Degenerate Truncated Special Polynomials. Mathematics 2020, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Dattoli, G.; Cesarano, C.; Sacchetti, D. A Note on Truncated Polynomials. Appl. Math. Comput. 2003, 134, 595–605. [Google Scholar] [CrossRef]
- Fischer, J. Anwendung der Theorie der Distributionen auf ein Problem in der Signalverarbeitung. Diploma Thesis, Ludwig-Maximillians-Universität München, Fakultät für Mathematik, Munich, Germany, 1997. [Google Scholar]
- Berenstein, C.A.; Gay, R. Complex Analysis and Special Topics in Harmonic Analysis; Springer: New York, NY, USA, 1995. [Google Scholar]
- Paley, R.E.A.C.; Wiener, N. Fourier Transforms in the Complex Domain; Colloquium Publications, American Mathematical Society: Providence, RI, USA, 1934; Volume XIX. [Google Scholar]
- Hamm, K.; Ledford, J. Regular Families of Kernels for Nonlinear Approximation. J. Math. Anal. Appl. 2019, 475, 1317–1340. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.W. The Regularized WKS Sampling Theorem and Its Application to the Numerical Solutions of Partial Differential Equations. Ph.D. Thesis, National University of Singapore, Singapore, 2004. [Google Scholar]
- Boyd, J.P. Construction of Lighthill’s Unitary Functions: The Imbricate Series of Unity. Appl. Math. Comput. 1997, 86, 1–10. [Google Scholar] [CrossRef]
- Gruber, M. Proofs of the Nyquist-Shannon Sampling Theorem. Bachelor’s Thesis, University Konstanz, Konstanz, Germany, 2013. [Google Scholar]
- Hille, E.; Klein, G. Riemann’s Localization Theorem for Fourier Series. Duke Math. J. 1954, 21, 587–591. [Google Scholar] [CrossRef]
- Névai, G. A New Proof of the Riemann’s Localization Principle. Acta Math. Acad. Sci. Hung. 1974, 25, 145. [Google Scholar] [CrossRef]
- Woodward, P.M. Probability and Information Theory, with Applications to Radar; Pergamon Press: Oxford, UK, 1953. [Google Scholar]
- Woodward, P.M.; Davies, I.L. Information Theory and Inverse Probability in Telecommunication. Proc. IEE Part III Radio Commun. Eng. 1952, 99, 37–44. [Google Scholar] [CrossRef]
- Poynton, C. Digital Video and HD: Algorithms and Interfaces; Morgan Kaufmann: Waltham, MA, USA, 2012. [Google Scholar]
- Klauder, J.R. The Design of Radar Signals having both High Range Resolution and High Velocity Resolution. Bell Syst. Tech. J. 1960, 39, 809–820. [Google Scholar] [CrossRef]
- Auslander, L.; Tolimieri, R. Characterizing the radar ambiguity functions. IEEE Trans. Inf. Theory 1984, 30, 832–836. [Google Scholar] [CrossRef]
- Auslander, L.; Tolimieri, R. Radar Ambiguity Functions and Group Theory. SIAM J. Math. Anal. 1985, 16, 577–601. [Google Scholar] [CrossRef]
- Cohen, L. Time-Frequency Distributions—A Review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef] [Green Version]
- Lieb, E.H. Integral Bounds for Radar Ambiguity Functions and Wigner Distributions. J. Math. Phys. 1990, 31, 594–599. [Google Scholar] [CrossRef]
- Kutyniok, G. Ambiguity Functions, Wigner Distributions and Cohen’s Class for LCA Groups. J. Math. Anal. Appl. 2003, 277, 589–608. [Google Scholar] [CrossRef] [Green Version]
- San Antonio, G.; Fuhrmann, D.R.; Robey, F.C. MIMO Radar Ambiguity Functions. IEEE J. Sel. Top. Signal Process. 2007, 1, 167–177. [Google Scholar] [CrossRef]
- Eustice, D.; Baylis, C.; Marks, R.J. Woodward’s Ambiguity Function: From Foundations to Applications. In Proceedings of the 2015 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 23–24 April 2015; pp. 1–17. [Google Scholar]
- Baylis, C.; Cohen, L.; Eustice, D.; Marks, R. Myths concerning Woodward’s Ambiguity Function: Analysis and Resolution. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2886–2895. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Susskind, L.; Friedman, A. Quantum Mechanics: The Theoretical Minimum; Penguin Books: London, UK, 2014. [Google Scholar]
- Feichtinger, H.G.; Strohmer, T. Gabor Analysis and Algorithms: Theory and Applications; Springer: Heidelberg/Berlin, Germany, 1998. [Google Scholar]
- Feichtinger, H.G. A Sequential Approach to Mild Distributions. Axioms 2020, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Benedetto, J.J.; Zimmermann, G. Sampling Multipliers and the Poisson Summation Formula. J. Fourier Anal. Appl. 1997, 3, 505–523. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Gröchenig, K. Irregular Sampling Theorems and Series Expansions of Band-limited Functions. J. Math. Anal. Appl. 1992, 167, 530–556. [Google Scholar] [CrossRef] [Green Version]
- Forster, O. Analysis 3, Integralrechnung im ℝn mit Anwendungen, 3rd ed.; Vieweg: Braunschweig, Germany, 1984. [Google Scholar]
- Baillie, R.; Borwein, D.; Borwein, J.M. Surprising Sinc Sums and Integrals. Am. Math. Mon. 2008, 115, 888–901. [Google Scholar] [CrossRef]
- Moore, C.N. Summable Series and Convergence Factors; Dover Publications Inc.: New York, NY, USA, 1938; Volume 22. [Google Scholar]
- MacLoad, N. The Centre Cannot Hold II: Elliptic Fourier Analysis. Palaeontol. Newsl. Ser. Palaeomath 101—Part 25 2012, 79, 29–43. [Google Scholar]
- Coles, P.J.; Kaniewski, J.; Wehner, S. Equivalence of Wave–Particle Duality to Entropic Uncertainty. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Angelova, M.; Dobrev, V.; Frank, A. Simple Applications of q-Bosons. J. Phys. A Math. Gen. 2001, 34, L503. [Google Scholar] [CrossRef] [Green Version]
- Shastry, B.S. Exact Solution of a Nonlinear Eigenvalue Problem in One Dimension. Phys. Rev. Lett. 1983, 50, 633. [Google Scholar] [CrossRef]
- Needham, T. Visual Complex Analysis; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- De Branges, L.; Rovnyak, J. Square Summable Power Series; Holt, Rinehart, Winston, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Chiang, T. Story of Your Life. Starlight 2; Tor Books: New York, NY, USA, 1998. [Google Scholar]
- Gefter, A. The Infinity Illusion. New Sci. 2013, 2930, 32–35. [Google Scholar] [CrossRef]
- Tegmark, M. What scientific idea is ready for retirement? In This Idea Must Die: Scientific Theories That Are Blocking Progress; Harper Perennial: New York, NY, USA, 2015; pp. 48–51. [Google Scholar]
- Ellis, D. Cross-Associativity and Essential Similarity. Am. Math. Mon. 1953, 60, 545–546. [Google Scholar] [CrossRef]
- Novelli, J.C.; Thibon, J.Y. Duplicial Algebras and Lagrange Inversion. arXiv 2012, arXiv:1209.5959. [Google Scholar]
- Born, M. A Suggestion for Unifying Quantum Theory and Relativity. J. Chem. Phys 1938, 3, 344–439. [Google Scholar] [CrossRef] [Green Version]
- Born, M. Reciprocity Theory of Elementary Particles. Rev. Mod. Phys. 1949, 21, 463–473. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, J.V.; Stens, R.L. On the Reversibility of Discretization. Mathematics 2020, 8, 619. https://doi.org/10.3390/math8040619
Fischer JV, Stens RL. On the Reversibility of Discretization. Mathematics. 2020; 8(4):619. https://doi.org/10.3390/math8040619
Chicago/Turabian StyleFischer, Jens V., and Rudolf L. Stens. 2020. "On the Reversibility of Discretization" Mathematics 8, no. 4: 619. https://doi.org/10.3390/math8040619
APA StyleFischer, J. V., & Stens, R. L. (2020). On the Reversibility of Discretization. Mathematics, 8(4), 619. https://doi.org/10.3390/math8040619