Theoretical Bounds on Performance in Threshold Group Testing Schemes †
Abstract
:1. Introduction
2. Threshold Group Testing Framework
2.1. Problem Description
2.2. Definition on Probability of Error
3. Theoretic Bounds on Performance
3.1. Lower Bound
3.2. Upper Bound
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Donoho, D.L. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Du, D.-Z.; Hwang, F.-K. Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing; World Scientific: Singapore, 2006. [Google Scholar]
- Bar-Lev, S.K.; Kleiner, I.; Perry, D.; Stadje, W. Recycled incomplete identification procedures for blood screening. Eur. J. Oper. Res. 2017, 259, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Tsybakov, A.; Likhanov, P. Packet communication on a channel without feedback. Probl. Inf. Transm. 1983, 19, 69–84. [Google Scholar]
- Wolf, J.K. Born again group testing: multi-access communications. IEEE Trans. Inf. Theory 1984, 31, 185–191. [Google Scholar] [CrossRef]
- Anderson, P.-O. Superimposed Codes for the Euclidean Channel; Linkoping University: Linkoping, Sweden, 1994. [Google Scholar]
- Fan, P.Z.; Darnell, M.; Honary, B. Superimposed codes for the multiaccess binary adder channel. IEEE Trans. Inf. Theory 1995, 41, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Amiri, E.; Tardos, G. High rate fingerprinting codes and fingerprinting capacity. In Proceedings of the 20th ACM-SIAM Sympos, Discrete Algorithms, New York, NY, USA, 4–6 January 2009. [Google Scholar]
- Barg, A.; Blakley, G.R.; Kabatiansky, G.A. Digital fingerprinting codes: Problem statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 2003, 49, 852–865. [Google Scholar] [CrossRef]
- Desmedt, Y.; Duif, N.; Tilborg, V.H.; Wang, H. Bounds and constructions for key distribution schemes. Adv. Math. Commun. 2009, 3, 273–293. [Google Scholar] [CrossRef]
- Colbourn, C.J.; Keri, G.; Rivas Soriano, R.P.; Schlage-Puchta, J.-C. Covering and radius-covering arrays: constructions and classification. Discret. Appl. Math. 2010, 158, 1158–1180. [Google Scholar] [CrossRef] [Green Version]
- Jnr, E.A.; Key, J.D. Designs and Their Codes; Cambridge University Press: Cambridge, England, 1992. [Google Scholar]
- Dyachkov, A.G.; Rykov, V.V. A coding model for a multiple-access adder channel. Probl. Inf. Transm. 1981, 17, 94–104. [Google Scholar]
- Bar-David, I.; Plotnik, E.; Rom, R. Forward collision resolution—A technique for random multiple-access to the adder channel. IEEE Trans. Inf. Theory 1993, 39, 1671–1675. [Google Scholar] [CrossRef]
- Laarhoven, T. Efficient probabilistic group testing based on traitor tracing. In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 2–4 October 2013. [Google Scholar]
- Bar-Lev, S.K.; Boneh, A.; Perry, D. Incomplete identification models for group-testable items. Nav. Res. Logist. 1990, 37, 647–659. [Google Scholar] [CrossRef]
- Ganditota, V.; Grigorescu, E.; Jaggi, S.; Zhou, S. Nearly Optimal Sparse Group Testing. IEEE Trans. Inf. Theory 2019, 65, 2760–2773. [Google Scholar] [CrossRef]
- Chan, C.L.; Che, P.H.; Jaggi, S.; Saligrama, V. Non-adaptive probabilistic group testing with noisy measurements: near-optimal bounds with efficient algorithms. In Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 28–30 September 2011. [Google Scholar]
- Scarlett, J. Noisy Adaptive Group Testing: Bounds and Algorithms. IEEE Trans. Inf. Theory 2019, 65, 3646–3661. [Google Scholar] [CrossRef] [Green Version]
- Dorfman, R. The Detection of Defective Members of Large Populations. Ann. Math. Stat. 1943, 14, 436–440. [Google Scholar] [CrossRef]
- Damaschke, P. Threshold group testing. In General Theory of Information Transfer and Combinatorics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4123, pp. 707–718. [Google Scholar]
- Bui, T.V.; Kuribayashi, M.; Cheraghchi, M.; Echizen, I. Efficiently Decodable Non-Adaptive Threshold Group Testing. IEEE Trans. Inf. Theory 2019, 65, 5519–5528. [Google Scholar] [CrossRef] [Green Version]
- Bui, T.V.; Kuribayashi, M.; Cheraghchi, M.; Echizen, I. Improved encoding and decoding for non-adaptive threshold group testing. arXiv 2019, arXiv:1901.02283. [Google Scholar]
- Chan, C.L.; Cai, S.; Bakshi, M.; Jaggi, S.; Saligrama, V. Near-Optimal Stochastic Threshold Group Testing. In Proceeding of the 2013 IEEE Information Theory Workshop, Sevilla, Spain, 9–13 September 2013. [Google Scholar]
- Chen, H.; Bonis, A.D. An almost optimal algorithm for generalized threshold group testing with inhibitors. J. Comput. Biol. 2011, 18, 851–864. [Google Scholar] [CrossRef]
- De Marco, G.; Jurdzinski, T.; Rozanski, M.; Stachowiak, G. Subquadratic non-adaptive threshold group testing. Fundam. Comput. Theory 2017, 177–189. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Seong, J.-T. A Bound for Finding Defective Samples in Threshold Group Testing. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Bacelona, Spain, 19–22 January 2020. [Google Scholar]
- Seong, J.-T. Density of Pooling Matrices vs. Sparsity of Signal of Group Testing Frameworks. IEICE Trans. Inf. Syst. 2019, E102, 1081–1084. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, J.-T. Theoretical Bounds on Performance in Threshold Group Testing Schemes. Mathematics 2020, 8, 637. https://doi.org/10.3390/math8040637
Seong J-T. Theoretical Bounds on Performance in Threshold Group Testing Schemes. Mathematics. 2020; 8(4):637. https://doi.org/10.3390/math8040637
Chicago/Turabian StyleSeong, Jin-Taek. 2020. "Theoretical Bounds on Performance in Threshold Group Testing Schemes" Mathematics 8, no. 4: 637. https://doi.org/10.3390/math8040637
APA StyleSeong, J. -T. (2020). Theoretical Bounds on Performance in Threshold Group Testing Schemes. Mathematics, 8(4), 637. https://doi.org/10.3390/math8040637