Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions
Abstract
:1. Introduction
2. Integrals Involving the Product of Logarithmic Functions
2.1. Definite Integral of the Contour Integral
2.2. Infinite Sum of the Contour Integral
3. Special Cases of the Definite Integrals
3.1. When Is Replaced by
3.2. When Is Replaced by
3.3. When and
3.4. When and
3.5. An Integral Involving the Logarithmic Hyperbolic Tangent and Quadratic Denominator
3.6. When , and
4. Generalizations and Table of Integrals
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Anton, W. Eigenschaften Einiger Bestimmten Integrale; Hof, K.K., Ed.; Bavarian State Library: Bavaria, Germany, 1861. [Google Scholar]
- Reynolds, R.; Stauffer, A. A New Method for Evaluating Definite Integrals in Terms of Special Functions. 2020, Not Yet Published. Available online: https://arxiv.org/pdf/1906.04927.pdf (accessed on 1 March 2020).
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, NY, USA, 1982. [Google Scholar]
- Oberhettinger, F. Tables of Fourier Transforms and Fourier Transforms of Distributions, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Junesang, C.; Srivastava, H.M. A family of log-gamma integrals and associated results. J. Math. Anal. Appl. 2005, 303, 436–449. [Google Scholar]
- Adamchick, V.S. On the Barnes function. In Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, London, ON, Canada, 22–25 July 2001; Mourrain, B., Ed.; ACM: New York, NY, USA, 2001; pp. 15–20. [Google Scholar]
- Barnes, E.W. The Theory of the G-Function. Q. J. Pure Appl. Math. 1900, 31, 264–314. [Google Scholar]
- Finch, S.R. Encyclopedia of Mathematics and its Applications: Mathematical Constants; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, More Special Functions; USSR Academy of Sciences: Moscow, Russia, 1990; Volume 1. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Bierens de Haan, D. Nouvelles Tables d’intégrales Définies; P. Engels: Leiden, The Netherlands, 1867. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions. Mathematics 2020, 8, 687. https://doi.org/10.3390/math8050687
Reynolds R, Stauffer A. Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions. Mathematics. 2020; 8(5):687. https://doi.org/10.3390/math8050687
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2020. "Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions" Mathematics 8, no. 5: 687. https://doi.org/10.3390/math8050687
APA StyleReynolds, R., & Stauffer, A. (2020). Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions. Mathematics, 8(5), 687. https://doi.org/10.3390/math8050687