The New New-Nacci Method for Calculating the Roots of a Univariate Polynomial and Solution of Quintic Equation in Radicals
Abstract
:1. Introduction
2. Pentanacci Sequences
2.1. Preparation of Pentanacci Sequences
2.2. Newton’s Identities of Pentanacci Sequence
3. Roots of the Quintic Polynomial
3.1. Quintic Polynomial with All Real Roots
3.2. Quintic Polynomials with Three Real Roots and One Conjugated Complex Root
- |p1| > |p2| >|p3| > ρ2
- |p1| > |p2| > ρ2 > |p3|
- |p1| > ρ2 > |p2| > |p3|
- ρ2 > |p1| > |p2| > |p3|
3.2.1. |p1| > |p2| > |p3| > ρ2
3.2.2. |p1| > |p2| > ρ2 > |p3|
3.2.3. |p1| > ρ2 > |p2| > |p3|
3.2.4. ρ2 > |p1| > |p2| > |p3|
3.2.5. Values Re(z) = a and Im(z) = b
- If the fourth class does not converge, then the real solutions are directly obtained from (46);
- If the third class does not converge (48), then the real solutions are directly obtained from (47); (49) and (50);
- If the second class does not converge (52), then the real solutions are directly obtained from (51), (53) and (54);
- If the first class does not converge (56), then the real solutions are directly obtained from (56) and (57).
3.3. Quintic Polynomial with One Real Root and Two Conjugated Complex Roots
- |p| > (ρ1)2 > (ρ2)2
- (ρ1)2 > |p| > (ρ2)2
- (ρ1)2 > (ρ2)2 > |p|
3.3.1. |p| > (ρ1)2 > (ρ2)2
3.3.2. (ρ1)2 > |p| > (ρ2)2
3.3.3. (ρ1)2 > (ρ2)2 > |p|
3.4. Values Re(z1,2) = a1, Im(z1,2) = b1, Re(z3,4) = a2 and Im(z3,4) = b2
4. Numerical Examples
5. Discussion—Limitation of the New-Nacci Method
6. Conclusions
- The method overcomes casus irreducibilis that may appear for Cardano and Ferrari formulae.
- For calculating roots of univariate polynomials up to the 9th degree, the New-nacci method is better than the Newton–Raphson and other iterative methods [19] in the sense that there are no stationary points or poor starting points, etc.
- The New-nacci method is easier for application than Abel and Jacobi elliptic modular functions.
- is the method for calculating roots of an arbitrary univariate polynomial based on Newton identities. Unlike the other methods that use derives or elliptic modular functions for finding the roots of univariate polynomials, the New-nacci method introduces an approach based on Newton identities for the first time;
- introduces a brand-new attitude for notation of Newton identities that indicates the class and degree of class for each sequence. Therefore, that approach enables the defining of Newton identities even for negative integers;
- is a nonlinear approximate method based on elementary mathematical operations and mathematical radicals;
- indices the distribution of real and complex roots before application of calculations by values of the limits of ratios of the sequences;
- is, in fact, a practical application of Abel’s impossibility theorem and has potential limitation for determining the roots of univariate polynomials of degree higher than 9, but the second phase of New-nacci method solves this limitation;
- is, in the sense of mathematical calculations, rather intensive;
- is extremely easy for programming and application on computers.
Author Contributions
Funding
Conflicts of Interest
References
- Décaillot, A.-M. Les Récréations mathématiques d’Édouard Lucas: Quelques éclairages. Hist. Math. 2014, 41, 506–517. [Google Scholar] [CrossRef]
- Stakhov, A.; Rozin, B. The golden shofar. Chaos Solitons Fractals 2005, 26, 677–684. [Google Scholar] [CrossRef]
- Stakhov, A.; Rozin, B. On a new class of hyperbolic functions. Chaos Solitons Fractals 2005, 23, 379–389. [Google Scholar] [CrossRef]
- Stakhov, A. The generalized principle of the golden section and its applications in mathematics, science, and engineering. Chaos Solitons Fractals 2005, 26, 263–289. [Google Scholar] [CrossRef]
- Kocer, E.G.; Tuglu, N.; Stakhov, A. On the m-extension of the Fibonacci and Lucas p-numbers. Chaos Solitons Fractals 2009, 40, 1890–1906. [Google Scholar] [CrossRef]
- Tuglu, N.; Kocer, E.G.; Stakhov, A. Bivariate fibonacci like p–polynomials. Appl. Math. Comput. 2011, 217, 10239–10246. [Google Scholar] [CrossRef]
- Falcón, S.; Plaza, Á. On k-Fibonacci sequences and polynomials and their derivatives. Chaos Solitons Fractals 2009, 39, 1005–1019. [Google Scholar] [CrossRef]
- Falcón, S.; Plaza, Á. The k-Fibonacci hyperbolic functions. Chaos Solitons Fractals 2008, 38, 409–420. [Google Scholar] [CrossRef]
- Falcón, S.; Plaza, Á. On k-Fibonacci numbers of arithmetic indexes. Appl. Math. Comput. 2009, 208, 180–185. [Google Scholar] [CrossRef]
- Tan, B.; Wen, Z.-Y. Some properties of the Tribonacci sequence. Eur. J. Comb. 2007, 28, 1703–1719. [Google Scholar] [CrossRef] [Green Version]
- Bravo, J.J.; Luca, F. Coincidences in generalized Fibonacci sequences. J. Number Theory 2013, 133, 2121–2137. [Google Scholar] [CrossRef]
- Mansour, T.; Shattuck, M. Polynomials whose coefficients are generalized Tribonacci numbers. Appl. Math. Comput. 2013, 219, 8366–8374. [Google Scholar] [CrossRef]
- Rybołowicz, B.; Tereszkiewicz, A. Generalized tricobsthal and generalized tribonacci polynomials. Appl. Math. Comput. 2018, 325, 297–308. [Google Scholar] [CrossRef]
- Florek, W. A class of generalized Tribonacci sequences applied to counting problems. Appl. Math. Comput. 2018, 338, 809–821. [Google Scholar] [CrossRef]
- Tanackov, I. Binet type formula for Tribonacci sequence with arbitrary initial numbers. Chaos Solitons Fractals 2018, 114, 63–68. [Google Scholar]
- Da Fonseca, C.M. Unifying some Pell and Fibonacci identities. Appl. Math. Comput. 2014, 236, 41–42. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z. Some identities of the generalized Fibonacci and Lucas sequences. Appl. Math. Comput. 2018, 339, 451–458. [Google Scholar] [CrossRef]
- Kılıç, E.; Arıkan, T. More on the infinite sum of reciprocal Fibonacci, Pell and higher order recurrences. Appl. Math. Comput. 2013, 219, 7783–7788. [Google Scholar] [CrossRef]
- Luca, F.; Patel, V. On perfect powers that are sums of two Fibonacci numbers. J. Number Theory 2018, 189, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.; Graham, R.; Spiro, S. Slow Fibonacci walks. J. Number Theory 2020, 210, 142–170. [Google Scholar] [CrossRef]
- Mursaleen, M.; Nasiruzzaman, M.; Khan, F.; Khan, A. On (p,q)-analogue of divided difference and Bernstein operators. J. Nonlinear Funct. Anal. 2017, 2017, D25. [Google Scholar]
- Srivastava, H.M.; Arjika, S.; Kelil, A.S. Some homogenous q-difference operators and the associated generalised Hahn polynomials. Appl. Set-Valued Anal. Optim. 2019, 1, 187–201. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Kiran, S.; Khan, B. Some applications of higher-order derivatives involving certain subclass of analytic and multivalent functions. J. Nonlinear Var. Anal. 2018, 2, 343–353. [Google Scholar]
- Connon, E. Abel’s proof: An essay on the sources and meaning of mathematical unsolvability. Hist. Math. 2006, 33, 371–372. [Google Scholar] [CrossRef] [Green Version]
n | PI(−n) | PI(n) | PII(n) | PIII(n) | PIV(n) | PV(n) |
---|---|---|---|---|---|---|
0 | +5.00000 × 100 | +5.00000 × 100 | +1.00000 × 101 | +1.00000 × 101 | +5.00000 × 100 | +1.00000 × 100 |
1 | +1.68986 × 100 | −3.00000 × 101 | −1.32900 × 101 | −2.39300 × 100 | +2.90640 × 101 | +1.71990 × 101 |
2 | +3.13391 × 100 | +2.66700 × 101 | +2.33316 × 102 | +7.67928 × 102 | +9.27030 × 102 | +2.95805 × 102 |
3 | +3.21286 × 100 | −1.91670 × 101 | −1.11942 × 103 | +4.02970 × 103 | +1.63456 × 104 | +5.08756 × 103 |
4 | +4.62932 × 100 | +2.44656 × 102 | +1.53292 × 104 | +1.72909 × 105 | +4.05070 × 105 | +8.75009 × 104 |
5 | +6.16852 × 100 | −2.97233 × 102 | −1.23463 × 105 | +1.93680 × 106 | +9.28318 × 106 | +1.50492 × 106 |
6 | +8.73835 × 100 | +2.60622 × 103 | +1.44027 × 106 | +5.26388 × 107 | +2.26177 × 108 | +2.58832 × 107 |
7 | +1.22859 × 101 | −4.30179 × 103 | −1.38383 × 107 | +7.73653 × 108 | +5.46931 × 109 | +4.45166 × 108 |
… | … | … | … | … | … | … |
97 | +1.06044 × 1015 | −5.95113 × 1052 | −1.135957 × 1099 | +6.55835 × 10123 | +7.40116 × 10134 | +6.97927 × 10119 |
98 | +1.51492 × 1015 | +2.08290 × 1053 | +1.19275 × 10100 | +1.23952 × 10125 | +1.81846 × 10136 | +1.20036 × 10121 |
99 | +2.16418 × 1015 | −7.29014 × 1053 | −1.25239 × 10101 | +2.34271 × 10126 | +4.46797 × 10137 | +2.06450 × 10122 |
100 | +3.09169 × 1015 | +2.55155 × 1054 | +1.31501 × 10102 | +4.42772 × 10127 | +1.09778 × 10139 | +3.55074 × 10123 |
n | ||||||
---|---|---|---|---|---|---|
0 | +0.33797314 | −0.06000000 | −1.32900000 | −0.23930000 | +5.81280000 | +17.19900000 |
1 | +1.85453676 | −88.90000000 | −17.55577878 | −320.90604639 | +31.89617775 | +17.19900000 |
2 | +1.02519072 | −0.71867267 | −4.79788257 | +5.24750194 | +17.63225516 | +17.19900000 |
3 | +1.44087299 | −12.76445453 | −13.69388674 | +42.90867581 | +24.78157458 | +17.19900000 |
4 | +1.33248699 | −1.21490201 | −8.05409883 | +11.20127397 | +22.91744371 | +17.19900000 |
5 | +1.41660445 | −8.76826778 | −11.66561134 | +27.17822315 | +24.36417992 | +17.19900000 |
6 | +1.40598475 | −1.65058617 | −9.60814516 | +14.69737188 | +24.18153177 | +17.19900000 |
7 | +1.42263765 | −6.78743919 | −10.92540103 | +22.64781780 | +24.46794499 | +17.19900000 |
… | … | … | … | … | … | … |
97 | +1.42857143 | −3.50000208 | −10.50000000 | +18.90000000 | +24.57000000 | +17.19900000 |
98 | +1.42857143 | −3.49999821 | −10.50000000 | +18.90000000 | +24.57000000 | +17.19900000 |
99 | +1.42857143 | −3.50000153 | −10.50000000 | +18.90000000 | +24.57000000 | +17.19900000 |
100 | +1.42857143 | −3.49999869 | −10.50000000 | +18.90000000 | +24.57000000 | +17.19900000 |
n | PI(n) | PI(2n) | PII(n) | PI(−n) | PIII(n) |
---|---|---|---|---|---|
0 | 5.000000 × 100 | 5.0000000 × 100 | +10.0000000 × 100 | +5.00000000 × 100 | +10.0000000 × 100 |
1 | 2.000000 × 100 | 4.0000000 × 100 | +0.0000000 × 100 | +0.80000000 × 100 | −3.0000000 × 100 |
2 | 4.000000 × 100 | 8.0000000 × 100 | +4.0000000 × 100 | −0.56000000 × 100 | +11.0000000 × 100 |
3 | −1.000000 × 100 | −17.0000000 × 100 | +9.0000000 × 100 | −0.92800000 × 100 | −81.0000000 × 100 |
4 | 8.000000 × 100 | −88.0000000 × 100 | +76.0000000 × 100 | +1.19360000 × 100 | +433.0000000 × 100 |
5 | −13.000000 × 100 | −191.0000000 × 100 | +180.0000000 × 100 | +0.83168000 × 100 | −663.0000000 × 100 |
6 | −17.000000 × 100 | −13.0000000 × 100 | +151.0000000 × 100 | −0.43481600 × 100 | +4723.0000000 × 100 |
7 | −82.000000 × 100 | 1642.0000000 × 100 | +2541.0000000 × 100 | −1.10606080 × 100 | −29277.0000000 × 100 |
… | … | … | … | … | … |
147 | +2.8037210 × 1032 | −2.2895847 × 1065 | +4.04490510 × 1064 | −1.5691658 × 10−7 | −3.3582069 × 1090 |
148 | +6.0910139 × 1032 | +1.4844730 × 1065 | +1.11278602 × 1065 | −1.4010369 × 10−6 | +1.3865365 × 1091 |
149 | +1.1056579 × 1032 | +6.1020834 × 1065 | +3.06135611 × 1065 | −3.5544186 × 10−7 | −5.7247322 × 1091 |
150 | +1.7314704 × 1032 | +1.3135825 × 1066 | +8.42203759 × 1065 | +1.0338718 × 10−6 | +2.3636275 × 1092 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanackov, I.; Pavkov, I.; Stević, Ž. The New New-Nacci Method for Calculating the Roots of a Univariate Polynomial and Solution of Quintic Equation in Radicals. Mathematics 2020, 8, 746. https://doi.org/10.3390/math8050746
Tanackov I, Pavkov I, Stević Ž. The New New-Nacci Method for Calculating the Roots of a Univariate Polynomial and Solution of Quintic Equation in Radicals. Mathematics. 2020; 8(5):746. https://doi.org/10.3390/math8050746
Chicago/Turabian StyleTanackov, Ilija, Ivan Pavkov, and Željko Stević. 2020. "The New New-Nacci Method for Calculating the Roots of a Univariate Polynomial and Solution of Quintic Equation in Radicals" Mathematics 8, no. 5: 746. https://doi.org/10.3390/math8050746
APA StyleTanackov, I., Pavkov, I., & Stević, Ž. (2020). The New New-Nacci Method for Calculating the Roots of a Univariate Polynomial and Solution of Quintic Equation in Radicals. Mathematics, 8(5), 746. https://doi.org/10.3390/math8050746