On Sequential Fractional q-Hahn Integrodifference Equations
Abstract
:1. Introduction
2. Preliminaries
3. Existence Results
- There exist constants such that for each and
- ,
4. Example
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. Basic integration. Q. J. Math. 1951, 2, 1–16. [Google Scholar] [CrossRef]
- Carmichael, R.D. The general theory of linear q-difference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Mason, T.E. On properties of the solutions of linear q-difference equations with entire function coefficients. Am. J. Math. 1915, 37, 439–444. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics 2056; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 2007, 14, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Benli, B.; Baleanu, D. Generalized q-Mittag–Leffler function by q-Caputo fractional linear equations. Abst. Appl. Anal. 2012, 2012, 546062. [Google Scholar]
- Baleanu, D.; Agarwal, P. Certain inequalities involving the fractional-integral operators. Abst. Appl. Anal. 2014, 2014, 371274. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Boundary value problems for q-difference inclusions. Abst. Appl. Anal. 2011, 2011, 292860. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Al-Hutami, H. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J. Frankl. Inst. 2014, 351, 2890–2909. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Wang, G.; Hobiny, A.; Zhang, L.; Ahmad, B. Existence and nonexistence of solutions for nonlinear second order q-integro-difference equations with non-separated boundary conditions. J. Nonlinear Sci. Appl. 2015, 8, 976–985. [Google Scholar] [CrossRef]
- Almeida, R.; Martins, N. Existence results for fractional q-difference equations of order α ∈ ]2,3[ with three-point boundary conditions. Commun. Nonlinear Sci. Numer. Simulat. 2014, 19, 1675–1685. [Google Scholar] [CrossRef]
- Pongarm, N.; Asawasamrit, S.; Tariboon, J.; Ntoyas, S.K. Multi-strip fractional q-integral boundary value problems for nonlinear fractional q-difference equations. Adv. Differ. Equ. 2014, 2014, 193. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.A. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70, 1–10. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Tariboon, J.; Ntouyas, S.K. Three-point boundary value problems of nonlinear second-order q-difference equations involving different numbers of q. J. Appl. Math. 2013, 2013, 763786. [Google Scholar] [CrossRef]
- Saengngammongkhol, T.; Kaewwisetkul, B.; Sitthiwirattham, T. Existence results for nonlinear second-order q-difference equations with q-integral boundary conditions. Differ. Equ. Appl. 2015, 7, 303–311. [Google Scholar] [CrossRef]
- Sitthiwirattham, T. On nonlocal fractional q-integral boundary value problems of fractional q-difference and fractional q-integrodifference equations involving different numbers of order and q. Bound. Value Probl. 2016, 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Patanaraprrlert, N.; Sitthiwirattham, T. Existence results of sequential derivatives of nonlinear quantum difference equations with a new class of three-point boundary value problems conditions. J. Comput. Aanal. Appl. 2015, 18, 844–856. [Google Scholar]
- Patanarapeelert, N.; Sriphanomwan, U.; Sitthiwirattham, T. On a class of sequential fractional q-integrodifference boundary value problems involving different numbers of q in derivatives and integrals. Adv. Differ. Equ. 2016, 2016, 148. [Google Scholar] [CrossRef] [Green Version]
- Sriphanomwan, U.; Tariboon, J.; Patanarapeelert, N.; Sitthiwirattham, T. Existence results of nonlocal boundary value problems for nonlinear fractional q-integrodifference equations. J. Nonlinear Funct. Anal. 2017, 2017, 28. [Google Scholar]
- Hahn, W. Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen. Math. Nachr. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Aldwoah, K.A. Generalized Time Scales and Associated Difference Equations. Ph.D. Thesis, Cairo University, Cairo, Egypt, 2009. [Google Scholar]
- Annaby, M.H.; Hamza, A.E.; Aldwoah, K.A. Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim. Theory Appl. 2012, 154, 133–153. [Google Scholar] [CrossRef]
- Costas-Santos, R.S.; Marcellán, F. Second structure Relation for q-semiclassical polynomials of the Hahn Tableau. J. Math. Anal. Appl. 2007, 329, 206–228. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.H.; Lee, D.W.; Park, S.B.; Yoo, B.H. Hahn class orthogonal polynomials. Kyungpook Math. J. 1998, 38, 259–281. [Google Scholar]
- Foupouagnigni, M. Laguerre-Hahn Orthogonal Polynomials with Respect to the Hahn Operator: Fourth-Order Difference Equation for the rth Associated and the Laguerre-Freud Equations Recurrence Coefficients. Ph.D. Thesis, National University of Benin, Proto Novo, Benin, 1998. [Google Scholar]
- Malinowska, A.B.; Torres, D.F.M. The Hahn quantum variational calculus. J. Optim. Theory Appl. 2010, 147, 419–442. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.B.; Torres, D.F.M. Quantum Variational Calculus; Spinger Briefs in Electrical and Computer Engineering-Control, Automation and Robotics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Malinowska, A.B.; Martins, N. Generalized transversality conditions for the Hahn quantum variational calculus. Optimization 2013, 62, 323–344. [Google Scholar] [CrossRef]
- Hamza, A.E.; Ahmed, S.M. Theory of linear Hahn difference equations. J. Adv. Math. 2013, 4, 441–461. [Google Scholar]
- Hamza, A.E.; Ahmed, S.M. Existence and uniqueness of solutions of Hahn difference equations. Adv. Differ. Equ. 2013, 2013, 316. [Google Scholar] [CrossRef] [Green Version]
- Hamza, A.E.; Makharesh, S.D. Leibniz’ rule and Fubinis theorem associated with Hahn difference operator. J. Adv. Math. 2016, 12, 6335–6345. [Google Scholar]
- Asawasamrit, S.; Sudprasert, C.; Ntouyas, S.K.; Tariboon, J. Some results on quantum Hahn integral inequalities. Adv. Differ. Equ. 2019, 2019, 154. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. New concepts of Hahn calculus and impulsive Hahn difference equations. Adv. Differ. Equ. 2016, 2016, 255. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T. On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q,ω-derivatives. Adv. Differ. Equ. 2016, 2016, 116. [Google Scholar] [CrossRef] [Green Version]
- Sriphanomwan, U.; Tariboon, J.; Patanarapeelert, N.; Ntouyas, S.K.; Sitthiwirattham, T. Nonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions. Adv. Differ. Equ. 2017, 2017, 170. [Google Scholar] [CrossRef] [Green Version]
- Brikshavana, T.; Sitthiwirattham, T. On fractional Hahn calculus. Adv. Differ. Equ. 2017, 2017, 354. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, Y.; Hou, C. New concepts of fractional Hahn’s q,ω-derivative of Riemann–Liouville type and Caputo type and applications. Adv. Differ. Equ. 2018, 2018, 292. [Google Scholar] [CrossRef]
- Patanarapeelert, N.; Sitthiwirattham, T. Existence results for fractional Hahn difference and fractional Hahn integral boundary value problems. Discrete Dyn. Nat. Soc. 2017, 2017, 7895186. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Brikshavana, T.; Sitthiwirattham, T. On nonlocal Dirichlet boundary value problem for sequential Caputo fractional Hahn integrodifference equations. Bound. Value Probl. 2018, 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. On nonlocal Robin boundary value problems for Riemann–Liouville fractional Hahn integrodifference equation. Bound. Value Probl. 2018, 2018, 46. [Google Scholar] [CrossRef]
- Dumrongpokaphan, T.; Patanarapeelert, N.; Sitthiwirattham, T. Existence results of a coupled system of caputo fractional Hahn difference equations with nonlocal fractional Hahn integral boundary value conditions. Mathematics 2019, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Tunç, C.; Alkhazan, A.; Ameen, B.; Khan, A. A generalization of Minkowski’s inequality by Hahn integral operator. J. Taibah Univ. Sc. 2018, 12, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K.; Sutthasin, B. Impulsive fractional quantum Hahn difference boundary value problems. Adv. Differ. Equ. 2019, 2019, 220. [Google Scholar] [CrossRef]
- Sitho, S.; Sudprasert, C.; Ntouyas, S.K.; Tariboon, J. Noninstantaneous impulsive fractional quantum Hahn integro-difference boundary value problems. Mathematics 2020, 8, 671. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumrongpokaphan, T.; Patanarapeelert, N.; Sitthiwirattham, T. On Sequential Fractional q-Hahn Integrodifference Equations. Mathematics 2020, 8, 753. https://doi.org/10.3390/math8050753
Dumrongpokaphan T, Patanarapeelert N, Sitthiwirattham T. On Sequential Fractional q-Hahn Integrodifference Equations. Mathematics. 2020; 8(5):753. https://doi.org/10.3390/math8050753
Chicago/Turabian StyleDumrongpokaphan, Thongchai, Nichaphat Patanarapeelert, and Thanin Sitthiwirattham. 2020. "On Sequential Fractional q-Hahn Integrodifference Equations" Mathematics 8, no. 5: 753. https://doi.org/10.3390/math8050753
APA StyleDumrongpokaphan, T., Patanarapeelert, N., & Sitthiwirattham, T. (2020). On Sequential Fractional q-Hahn Integrodifference Equations. Mathematics, 8(5), 753. https://doi.org/10.3390/math8050753