Next Article in Journal
Analysis of the Message Propagation Speed in VANET with Disconnected RSUs
Previous Article in Journal
Semi-Implicit and Semi-Explicit Adams-Bashforth-Moulton Methods
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Quantum Codes from Constacyclic Codes over the Ring Fq[u1,u2]/〈 u 1 2 -u1, u 2 2 -u2,u1u2-u2u1

1
Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(5), 781; https://doi.org/10.3390/math8050781
Submission received: 4 April 2020 / Revised: 6 May 2020 / Accepted: 9 May 2020 / Published: 13 May 2020
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
In this paper, we study the structural properties of ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic codes over R = F q [ u 1 , u 2 ] / u 1 2 u 1 , u 2 2 u 2 , u 1 u 2 u 2 u 1 where q = p m for odd prime p and m 1 . We derive the generators of constacyclic and dual constacyclic codes. We have shown that Gray image of a constacyclic code of length n is a quasi constacyclic code of length 4 n . Also we have classified all possible self dual linear codes over this ring R . We have given the applications by computing non-binary quantum codes over this ring R .

1. Introduction

The class of constacyclic codes consists of an algebraically rich family of error-correcting codes and are the generalizations of cyclic and negacyclic codes. These codes can be easily encoded using shift registers and can be easily decoded due to their rich algebraic structure, which justify their preferred role from engineering perspective.
The study of cyclic codes over the semi-local ring F 2 + v F 2 , v 2 = v was carried by Zhu et al. [1], which was generalized to F 3 + v F 3 with v 2 = 1 by Cengellenmis [2]. Later on, Zhu and Wang [3], considered ( 1 2 v ) -constacyclic codes over F p + v F p with v 2 = v and proved that the image of a ( 1 2 v ) -constacyclic code of length n over F p + v F p under the Gray map is a distance-invariant linear cyclic code of length 2 n over F p . Since then, a lot of research has been done on the study of constacyclic codes over semi-local rings.
Quantum error-correcting codes have a significant role in both quantum communication as well as in quantum computation. The investigations on quantum error-correcting codes has accomplished huge growth after it has been discovered that there exist a class of codes known as quantum error-correcting codes which preserve quantum information as classical error-correcting codes preserve classical information. Quantum error-correcting codes give an efficient technique to overcome decoherence. In [4], Shor obtained the first quantum error-correcting code. After that, a technique was given by Calderbank et al. in [5] to find quantum error-correcting codes from classical error-correcting codes. Gottesman [6] studied quantum error-correcting codes that saturate the quantum Hamming bound. Currently, the research on quantum error-correcting codes has been developed quickly. Using self-orthogonal or dual containing properties of classical cyclic codes over finite field F q (q is a power of prime number), many new quantum error-correcting codes have been obtained (for references see [7,8,9,10,11]). Further, Ouyang shown that ‘good codes’ can be attained from MDS codes using the construction given in [12].
Quantum codes over different rings is studied by many authors (for references see [9,13,14,15,16,17,18]). In these researches, researchers have used the orthogonal properties of cyclic codes to construct quantum codes over these ring. From the last few years computation of quantum codes has been going on using constacyclic codes over finite rings. Gao et al. [19] have studied non-binary quantum codes using u-constacyclic codes over F p + u F p with u 2 = 1 . Quantum MDS codes have been studied [7,8,11] using constacyclic codes and BCH like constacyclic codes.
Recently, Ashraf and Mohammad [20] computed quantum codes from cyclic codes over the ring F q [ u 1 , u 2 ] / u 1 2 u 1 , u 2 2 u 2 , u 1 u 2 u 2 u 1 where q = p m for odd prime. In this paper we generalize their work over classes of constacyclic codes. Here we have studied the structural properties of ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic codes over the ring R = F q [ u 1 , u 2 ] / u 1 2 u 1 , u 2 2 u 2 , u 1 u 2 u 2 u 1 where q = p m for odd prime p and m 1 . As an application, we have constructed the quantum codes over F q .

2. Preliminaries

Let R = F q + u 1 F q + u 2 F q + u 1 u 2 F q be the ring such that u 1 2 = u 1 , u 2 2 = u 2 and u 1 u 2 = u 2 u 1 , here F q is the finite field with q elements, where q = p m for odd prime p and m 1 . It is commutative semi-local ring with four maximal ideals. This is a principal ideal non chain ring.
Let C be a linear code of length n over R . Then, it is a R -submodule of R n , where elements of C are called codeword and it is said to be λ -constacyclic code if and only if C is invariant under the λ -constacyclic shift operator Ψ λ : R n R n defined by Ψ λ ( d 0 , d 1 , , d n 1 ) = ( λ d n 1 , d 0 , , d n 2 ) which for λ = 1 beomes the cyclic code. By identifying each codeword d = ( d 0 , d 1 , , d n 1 ) R n to a polynomial d ( x ) = d 0 + d 1 x + + d n 1 x n 1 in R [ x ] / x n λ , a linear code C is a λ -constacyclic code of length n over R if and only if it is an ideal of the ring R [ x ] / x n λ .
For any two elements r = ( r 0 , r 1 , , r n 1 ) , s = ( s 0 , s 1 , , s n 1 ) R n the inner product is defined as r · s = i = 0 n 1 r i s i . If r · s = 0 then r and s are said to be orthogonal. For a linear code C of length n over R , the dual code is defined by C = { r | s C , r · s = 0 } , which is also linear code of length n over R . A code C is called self orthogonal if C C and self dual if C = C .
Any element of R can be expressed as
a + u 1 b + u 2 c + u 1 u 2 d = ( 1 u 1 u 2 + u 1 u 2 ) a + ( u 1 u 1 u 2 ) ( a + b ) + ( u 2 u 1 u 2 ) ( a + c ) + u 1 u 2 ( a + b + c + d )
Let e 1 = 1 u 1 u 2 + u 1 u 2 , e 2 = u 1 u 1 u 2 , e 3 = u 2 u 1 u 2 and e 4 = u 1 u 2 . Here e i 2 = e i , e i e j = 0 and i = 1 4 e i = 1 , where i , j = 1 , 2 , 3 , 4 and i j . It is easy to see that e i R F q , for i = 1 , 2 , 3 , 4 . We can express R = e 1 R e 2 R e 3 R e 4 R = e 1 F q e 2 F q e 3 F q e 4 F q . Therefore, for any r R can be expressed uniquely as r = e 1 x + e 2 y + e 3 w + e 4 z , where x , y , w , z F q for i = 1 , 2 , 3 , 4 .
We define the Gray map as follows:
ψ : R F q 4
ψ ( r ) = ( x , y , w , z )
where x , y , w , z F q .
This is a linear map and can be extended component-wise in following way:
ψ : R n F q 4 n
r = ( r 0 , r 1 , , r n 1 ) ( x 0 , x 1 , , x n 1 , y 0 , , y n 1 , w 0 , , w n 1 , z 0 , , z n 1 )
where r i = e 1 x i + e 2 y i + e 3 w i + e 4 z i , and x i , y i , w i , z i F q for i = 0 , 1 , , n 1 .
For any element r = e 1 x + e 2 y + e 3 w + e 4 z R , we define the Lee weight of r as w L ( r ) = w H ( ψ ( r ) ) , where w H ( ψ ( r ) ) denotes the Hamming weight of ψ ( r ) over F q , where the Hamming weight of any element is defined as the number of nonzero components. The Lee distance between r 1 and r 2 C is defined by d L ( r 1 , r 2 ) = w L ( r 1 r 2 ) = w H ( ψ ( r 1 r 2 ) ) . The Lee distance of C is defined as d L ( C ) = min { d L ( r 1 , r 2 ) | r 1 r 2 } .
Let B i , i = 1 , 2 , 3 , 4 be code over R . We denote that B 1 B 2 B 3 B 4 = { b 1 + b 2 + b 3 + b 4 | b i A i , i = 1 , 2 , 3 , 4 } and B 1 B 2 B 3 B 4 = { ( b 1 , b 2 , b 3 , b 4 ) | b i B i , i = 1 , 2 , 3 , 4 } . For a linear code C of length n over R , we define
C 1 = { x F q n | e 1 x + e 2 y + e 3 w + e 4 z C , a n d y , w , z F q n } ,
C 2 = { y F q n | e 1 x + e 2 y + e 3 w + e 4 z C , a n d x , w , z F q n } ,
C 3 = { w F q n | e 1 x + e 2 y + e 3 w + e 4 z C , a n d x , y , z F q n } ,
C 4 = { z F q n | e 1 x + e 2 y + e 3 w + e 4 z C , a n d x , y , w F q n } .
Here C i are linear codes over F q n for i = 1 , 2 , 3 , 4 . Then C 1 , C 2 , C 3 and C 4 are q-ary linear codes of length n. So a linear code C of length n over R can be uniquely expressed as C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 and | C | = | C 1 | | C 2 | | C 3 | | C 4 | and d L ( C ) = m i n { d H ( C i ) , i = 1 , 2 , 3 , 4 } .
A matrix is called generator matrix of C if the rows of the matrix generates C . If G i are the generator matrices of q-ary linear codes C i , i = 1 , 2 , 3 , 4 respectively, then the generator matrix of C is
G = e 1 G 1 e 2 G 2 e 3 G 3 e 4 G 4
and the generator matrix of ψ ( C ) is
ψ ( G ) = ψ ( e 1 G 1 ) ψ ( e 2 G 2 ) ψ ( e 3 G 3 ) ψ ( e 4 G 4 ) .

3. Gray Map and Linear Codes over the Ring R

Proposition 1.
The Gray map ψ is a distance preserving F q -linear map from R n (Lee distance) to F q 4 n (Hamming distance).
Proof. 
Let r 1 = x 1 e 1 + y 1 e 2 + w 1 e 3 + z 1 e 4 and r 2 = x 2 e 1 + y 2 e 2 + w 2 e 3 + z 2 e 4 R n , where x 1 , y 1 , w 1 , z 1 , x 2 , y 2 , w 2 , z 2 F q n . Then
ψ ( r 1 + r 2 ) = ( x 1 + x 2 , y 1 + y 2 , w 1 + w 2 , z 1 + z 2 ) = ( x 1 , y 1 , w 1 , z 1 ) + ( x 2 , y 2 , w 2 , z 2 ) = ψ ( r 1 ) + ψ ( r 2 ) .
Also, for any r = e 1 x + e 2 y + e 3 w + e 4 z R n and α F q , we have
ψ ( α r ) = ψ ( α e 1 x + α e 2 y + α e 3 w + α e 4 z ) = α ψ ( r )
So ψ is F q -linear. For the other part, d L ( r 1 , r 2 ) = w L ( r 1 r 2 ) = w H ( ψ ( r 1 r 2 ) ) = w H ( ψ ( r 1 ) ψ ( r 2 ) ) = d H ( ψ ( r 1 ) , ψ ( r 2 ) ) . Therefore the Gray map ψ is a distance preserving F q -linear map. □
Proposition 2.
Let C be a [ n , k , d L ] linear code over R . Then ψ ( C ) is a [ 4 n , k , d H ] linear code over F q 4 n , where d L = d H .
Proof. 
By the above result, ψ is F q -linear distance preserving map, therefore d L = d H . As ψ is bijection therefore | C | = | ψ ( C ) | = q k also ψ ( C ) has length 4 n . Therefore, ψ ( C ) is a [ 4 n , k , d H ] linear code over F q 4 n , where d L = d H . □
Theorem 1.
If C is a linear code of length n over R , then ψ ( C ) = ψ ( C ) . Moreover, if C is self orthogonal, then ψ ( C ) is also self orthogonal.
Proof. 
Let r 1 = x 1 e 1 + y 1 e 2 + w 1 e 3 + z 1 e 4 C and r 2 = x 2 e 1 + y 2 e 2 + w 2 e 3 + z 2 e 4 C . Then by inner product of r 1 and r 2 , we have
r 1 · r 2 = e 1 x 1 x 2 + e 2 y 1 y 2 + e 3 w 1 w 2 + e 4 z 1 z 2 = 0 .
which implies, x 1 x 2 = y 1 y 2 = w 1 w 2 = z 1 z 2 = 0 . Also
ψ ( r 1 ) · ψ ( r 2 ) = ( x 1 , y 1 , w 1 , z 1 ) · ( x 2 , y 2 , w 2 , z 2 ) = x 1 x 2 + y 1 y 2 + w 1 w 2 + z 1 z 2 = 0
As ψ ( r 1 ) ψ ( C ) so ψ ( r 2 ) ψ ( C ) . Thus, ψ ( C ) ψ ( C ) . Since | ψ ( C ) | = | ψ ( C ) | , we get ψ ( C ) = ψ ( C ) . Similarly we can show the other part. □
Proposition 3.
If C is a linear code of length n over R , then ψ ( C ) = C 1 C 2 C 3 C 4 . Moreover, | ψ ( C ) | = | C 1 | | C 2 | | C 3 | | C 4 | .
Proof. 
Since C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 is a code of length n over R, where C i , i = 1 4 are codes of length n over F q , each r C can be written as r = e 1 x + e 2 y + e 3 z + e 4 w , where x C 1 , y C 2 , z C 3 and w C 4 . Now by definition of the Gray map, we have ψ ( r ) = ( x , y , z , w ) C 1 C 2 C 3 C 4 . Hence ψ ( C ) = C 1 C 2 C 3 C 4 . □
Proposition 4.
Let C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 be linear code over R of length n. Then C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 is also a linear code over R of length n.

4. Properties of ( α + u 1 β + u 2 γ + u 1 u 2 δ ) t-Constacyclic Codes over R

Theorem 2.
If ( α + u 1 β + u 2 γ + u 1 u 2 δ ) is a unit in R and C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 is a linear code of length n over R , then C is a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R if and only if C 1 is α-constacyclic, C 2 is ( α + β ) -constacyclic, C 3 is ( α + γ ) -constacyclic and C 4 is ( α + β + γ + δ ) -constacyclic codes of length n over F q respectively.
Proof. 
Suppose C is a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R and x = ( x 0 , x 1 , , x n 1 ) C 1 , y = ( y 0 , y 1 , , y n 1 ) C 2 , w = ( w 0 , w 1 , , w n 1 ) C 3 and z = ( z 0 , z 1 , , z n 1 ) C 4 where x i , y i , w i , z i F q for i = 0 , 1 , n 1 . Let d = ( d 0 , d 1 , , d n 1 ) C , where d i = e 1 x i + e 2 y i + e 3 w i + e 4 z i for i = 0 , 1 , n 1 . Since C is a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R , so
Ψ ( α + u 1 β + u 2 γ + u 1 u 2 δ ) ( c ) = ( ( α + u 1 β + u 2 γ + u 1 u 2 δ ) c n 1 , c 0 , , c n 2 ) C
As, ( α + u 1 β + u 2 γ + u 1 u 2 δ ) c n 1 = e 1 α x n 1 + e 2 ( α + β ) y n 1 + e 3 ( α + γ ) w n 1 + e 4 ( α + β + γ + δ ) z n 1
Therefore,
Ψ ( α + u 1 β + u 2 γ + u 1 u 2 δ ) ( c ) = e 1 ( α x n 1 , x 0 , , x n 2 ) + e 2 ( ( α + β ) y n 1 , y 0 , , y n 2 )
+ e 3 ( ( α + γ ) w n 1 , w 0 , , w n 2 ) + e 4 ( ( α + β + γ + δ ) z n 1 , z 0 , , z n 2 ) C
Therefore,
Ψ ( α ) x = ( α x n 1 , x 0 , , x n 2 ) C 1
Ψ ( α + β ) y = ( ( α + β ) y n 1 , y 0 , , y n 2 ) C 2
Ψ ( α + γ ) w = ( ( α + γ ) w n 1 , w 0 , , w n 2 ) C 3
and
Ψ ( α + β + γ + δ ) z = ( ( α + β + γ + δ ) z n 1 , z 0 , , z n 2 ) C 4
Hence C 1 is α -constacyclic, C 2 is ( α + β ) -constacyclic, C 3 is ( α + γ ) -constacyclic and C 4 is ( α + β + γ + δ ) -constacyclic codes of length n over F q respectively.
Conversely, considering the above notations let C 1 is α -constacyclic, C 2 is ( α + β ) -constacyclic, C 3 is ( α + γ ) -constacyclic and C 4 is ( α + β + γ + δ ) -constacyclic codes of length n over F q . Therefore,
Ψ ( α ) x = ( α x n 1 , x 0 , , x n 2 ) C 1
Ψ ( α + β ) y = ( ( α + β ) y n 1 , y 0 , , y n 2 ) C 2
Ψ ( α + γ ) w = ( ( α + γ ) w n 1 , w 0 , , w n 2 ) C 3
and
Ψ ( α + β + γ + δ ) z = ( ( α + β + γ + δ ) z n 1 , z 0 , , z n 2 ) C 4
Now as
e 1 ( α x n 1 , x 0 , , x n 2 ) + e 2 ( ( α + β ) y n 1 , y 0 , , y n 2 )
+ e 3 ( ( α + γ ) w n 1 , w 0 , , w n 2 ) + e 4 ( ( α + β + γ + δ ) z n 1 , z 0 , , z n 2 )
= ( ( α + u 1 β + u 2 γ + u 1 u 2 δ ) c n 1 , c 0 , , c n 2 ) = Ψ ( α + u 1 β + u 2 γ + u 1 u 2 δ ) ( c )
Therefore, C is a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . □
Definition 1.
Let a F q m n with a = ( a 1 | a 2 | | a r 1 | a m ) , where a i F q n for i = 1 , , m . Let η m λ be a map from F q m n to F q m n defined η m λ ( a ) = ( Ψ λ 1 ( a 1 ) | | Ψ λ m ( a m ) ) , where Ψ λ i is the λ i -constacyclic shift from F q n to F q n . A code of length m n over F q is called a quasi constacyclic code of index m if η m λ ( C ) = C .
Theorem 3.
Let C be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . Then ψ ( C ) is a quasi constacyclic code of index 4 and of length 4 n .
Proof. 
Let C be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . Then by Theorem 2, C 1 is α -constacyclic, C 2 is ( α + β ) -constacyclic, C 3 is ( α + γ ) -constacyclic and C 4 is ( α + β + γ + δ ) -constacyclic codes of length n over F q . Then by the above definition, C 1 C 2 C 3 C 4 is quasi constacyclic code of index 4 and of length 4 n . As by the Proposition 3, ψ ( C ) = C 1 C 2 C 3 C 4 . Hence, ψ ( C ) is a quasi constacyclic code of index 4 and of length 4 n . □
Corollary 1.
Let C be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . Then its dual C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 is a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) 1 -constacyclic code of length n over R if and only if C 1 is α 1 -constacyclic, C 2 is ( α + β ) 1 -constacyclic, C 3 is ( α + γ ) 1 -constacyclic and C 4 is ( α + β + γ + δ ) 1 -constacyclic codes of length n over F q respectively.
Proof. 
Using Proposition 4 and arguing similar like Theorem 2, we can prove this result. □
Corollary 2.
If C be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R , then C is self dual if and only if ( α + u 1 β + u 2 γ + u 1 u 2 δ ) = 1 , 1 , 1 2 u 1 , 1 2 u 2 , 1 2 u 1 u 2 , 1 + 2 u 1 , 1 + 2 u 2 , 1 + 2 u 1 u 2 , 1 2 u 1 + 2 u 1 u 2 , 1 2 u 2 + 2 u 1 u 2 , 1 + 2 u 1 2 u 1 u 2 , 1 + 2 u 2 2 u 1 u 2 , 1 2 u 1 2 u 2 + 2 u 1 u 2 , 1 + 2 u 1 + 2 u 2 2 u 1 u 2 , 1 2 u 1 2 u 2 + 4 u 1 u 2 , 1 + 2 u 1 + 2 u 2 4 u 1 u 2 .
Proof. 
Proof follows from the fact that, α = ± 1 , ( α + β ) = ± 1 , ( α + γ ) = ± 1 and ( α + β + γ + δ ) = ±1. □
Now using the values ( α + u 1 β + u 2 γ + u 1 u 2 δ ) from Corollary 2, here we classify all possible types of linear codes over F q depending upon the values of units. Using the Theorem 2 and Corollary 2 we give the classification of codes over F q in Table below.
Each row of the Table 1, demonstrates the structure of codes for certain value of a unit. For example, if we take the last row of the above Table 1, then ( α + u 1 β + u 2 γ + u 1 u 2 δ ) = 1 + 2 u 1 + 2 u 2 4 u 1 u 2 . As in this case α = 1 , β = 2 , γ = 2 , δ = 4 . Then by Theorem 2, we have the following result.
Proposition 5.
C is a ( 1 + 2 u 1 + 2 u 2 4 u 1 u 2 ) -constacyclic code of length n over R if and only if C 1 , C 4 are negacyclic and C 2 , C 3 are cyclic codes of length n over the F q .
Remark 1.
For each different values of ( α + u 1 β + u 2 γ + u 1 u 2 δ ) from the first column of the Table 1, we can show similar type of results as in Proposition 5.
Proposition 6.
Let C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . Then
 1 
C = e 1 f 1 , e 2 f 2 , e 3 f 3 , e 4 f 4 a n d C = q 4 n ( d e g ( f 1 ) + d e g ( f 2 ) + d e g ( f 3 ) + d e g ( f 4 ) ) .
 2 
C = f ( x ) and f ( x ) | ( x n ( α + u 1 β + u 2 γ + u 1 u 2 δ ) ) , such that f ( x ) = e 1 f 1 ( x ) + e 2 f 2 ( x ) + e 3 f 3 ( x ) + e 4 f 4 ( x ) .
where f 1 , f 2 , f 3 and f 4 are the generator polynomials of C 1 , C 2 , C 3 and C 4 respectively.
Proof. 
( 1 . ) Let C be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R , then by Theorem 2 C 1 is α -constacyclic, C 2 is ( α + β ) -constacyclic, C 3 is ( α + γ ) -constacyclic code and C 4 is ( α + β + γ + δ ) -constacyclic codes of length n over F q respectively. Then we can write, C 1 = ( f 1 ( x ) ) F q [ x ] / ( x n α ) , C 2 = ( f 2 ( x ) ) F q [ x ] / ( x n ( α + β ) ) , C 3 = ( f 3 ( x ) ) F q [ x ] / ( x n ( α + γ ) ) and C 4 = ( f 4 ( x ) ) F q [ x ] / ( x n ( α + β + γ + δ ) ) . Also as C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 , we can write C as,
C = { f ( x ) | f ( x ) = e 1 f 1 ( x ) + e 2 f 2 ( x ) + e 3 f 3 ( x ) + e 4 f 4 ( x ) w h e r e f i ( x ) C i f o r i = 1 , 2 , 3 , 4 }
This implies C e 1 f 1 , e 2 f 2 , e 3 f 3 , e 4 f 4 R [ x ] / ( x n ( α + u β + v γ + u v δ ) ) .
On the other hand, let e 1 f 1 ( x ) g 1 ( x ) + e 2 f 2 ( x ) g 2 ( x ) + e 3 f 3 ( x ) g 3 ( x ) + e 4 f 4 ( x ) g 4 ( x ) e 1 f 1 , e 2 f 2 , e 3 f 3 , e 4 f 4 , where g 1 ( x ) , g 2 ( x ) , g 3 ( x ) and g 4 ( x ) are elements of R [ x ] / ( x n ( α + u 1 β + u 2 γ + u 1 u 2 δ ) ) . Then there exists k 1 ( x ) F q [ x ] / ( x n α ) , k 2 ( x ) F q [ x ] / ( x n ( α + β ) ) , k 3 ( x ) F q [ x ] / ( x n ( α + γ ) ) and k 4 ( x ) F q [ x ] / ( x n ( α + β + γ + δ ) ) such that e 1 g 1 ( x ) = e 1 k 1 ( x ) , e 2 g 2 ( x ) = e 2 k 2 ( x ) , e 3 g 3 ( x ) = e 3 k 3 ( x ) and e 4 g 4 ( x ) = e 4 k 4 ( x ) . Therefore, e 1 f 1 , e 2 f 2 , e 3 f 3 , e 4 f 4 C . Hence, C = e 1 f 1 , e 2 f 2 , e 3 f 3 , e 4 f 4 .
As ψ ( C ) = | C 1 | | C 2 | | C 3 | | C 4 | and | ψ ( C ) | = C , Therefore,
C = | C 1 | | C 2 | | C 3 | | C 4 | = q n d e g ( f 1 ) q n d e g ( f 2 ) q n d e g ( f 3 ) q n d e g ( f 4 ) = q 4 n ( i = 1 4 d e g ( f i ) )
( 2 . ) Let C be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R and f i be the generator polynomial of C i for i = 1 , 2 , 3 , 4 . Then by the above result C = e 1 f 1 , e 2 f 2 , e 3 f 3 , e 4 f 4 . Suppose C = e 1 f 1 + e 2 f 2 + e 3 f 3 + e 4 f 4 , then it is obvious that, C C . As e i 2 = e i , e i e j = 0 where i , j = 1 , 2 , 3 , 4 and i j then, e i ( e 1 f 1 + e 2 f 2 + e 3 f 3 + e 4 f 4 ) = e i f i for i = 1 , 2 , 3 , 4 , this implies C C . Therefore C = C , and C = f ( x ) , where f ( x ) = e 1 f 1 + e 2 f 2 + e 3 f 3 + e 4 f 4 .
Now suppose f i are the generator polynomials of C i , for i = 1 , 2 , 3 , 4 . Then f 1 divides x n α , f 2 divides x n ( α + β ) , f 3 divides x n ( α + γ ) and f 4 divides x n ( α + β + γ + δ ) such that, x n α = g 1 f 1 , x n ( α + β ) = g 2 f 2 , x n ( α + γ ) = g 3 f 3 and x n ( α + β + γ + δ ) = g 4 f 4 , for some g i C i . Then
x n ( α + u 1 β + u 2 γ + u 1 u 2 δ )
= x n ( e 1 α + e 2 ( α + β ) + e 3 ( α + γ ) + e 4 ( α + β + γ + δ ) )
= ( e 1 g 1 + e 2 g 2 + e 3 g 3 + e 4 g 4 ) ( e 1 f 1 + e 2 f 2 + e 3 f 3 + e 4 f 4 ) .
Therefore, x n ( α + u 1 β + u 2 γ + u 1 u 2 δ ) = f ( x ) ( e 1 g 1 + e 2 g 2 + e 3 g 3 + e 4 g 4 ) . Hence, f ( x ) | ( x n ( α + u 1 β + u 2 γ + u 1 u 2 δ ) ) . □
Corollary 3.
Let C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R and f i are the generator polynomials of C i for i = 1 , 2 , 3 , 4 . Then
 1 
C = e 1 h 1 ( x ) + e 2 h 2 ( x ) + e 3 h 3 ( x ) + e 4 h 4 ( x ) and | C | = q i = 1 4 ( d e g ( f i ( x ) ) ) .
 2 
C = h ( x ) w h e r e h ( x ) = e 1 h 1 ( x ) + e 2 h 2 ( x ) + e 3 h 3 ( x ) + e 4 h 4 ( x )
where h i ( x ) are the reciprocal polynomials of h i ( x ) for i = 1 , 2 , 3 , 4 , such that h 1 f 1 = x n α , h 2 f 2 = x n ( α + β ) , h 3 f 3 = x n ( α + γ ) , h 4 f 4 = x n ( α + β + γ + δ ) .

5. Quantum Codes from ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -Constacyclic Codes over R

Quantum error-correcting codes (QECC) are a key ingredient to implement information processing based on quantum mechanics. For quantum systems composed of n subsystems of dimension q 2 , so-called qudits, a quantum code C = ( ( N ; K ) ) q is a k-dimensional subspace of the Hilbert space ( C q ) n . If the dimension of the code C is q k , it will be denoted by C = [ [ n ; k ; d ] ] q , where d is the minimum distance.
The following theorem is an important construction of quantum error-correcting codes which is used to construct quantum codes and is called CSS construction:
Theorem 4
([5]). (CSS Construction) Suppose C 1 and C 2 are [ n , k 1 , d 1 ] q and [ n , k 2 , d 2 ] q linear codes over G F ( q ) respectively such that C 2 C 1 . Also, if d = m i n { d 1 , d 2 } , then there exists a quantum error-correcting code C with parameters [ [ n , k 1 + k 2 n , d ] ] q . In particular, if C 1 C 1 , then there exists a quantum error-correcting code C with parameters [ [ n , 2 k 1 n , d 1 ] ] q .
Lemma 1
([5]). If C is a q-ary linear cyclic or negacyclic code with generator polynomial f ( x ) , then C contains its dual code if and only if
x n κ 0 ( m o d f f )
where f is the reciprocal polynomial of f and κ = ± 1
Theorem 5.
Let C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . Then C C if and only if x n α 0 ( m o d f 1 f 1 ) , x n ( α + β ) 0 ( m o d f 2 f 2 ) , x n ( α + γ ) 0 ( m o d f 3 f 3 ) and x n ( α + β + γ + δ ) 0 ( m o d f 4 f 4 ) , where f i is the reciprocal polynomial of f i for i = 1 , 2 , 3 , 4 and α = α + β = α + γ = α + β + γ + δ = ± 1 .
Proof. 
Let x n α 0 ( m o d f 1 f 1 ) , x n ( α + β ) 0 ( m o d f 2 f 2 ) , x n ( α + γ ) 0 ( m o d f 3 f 3 ) and x n ( α + β + γ + δ ) 0 ( m o d f 4 f 4 ) . Then by Lemma 1, we have C i C i , i = 1 , 2 , 3 , 4 . This implies that e i C i e i C i , i = 1 , 2 , 3 , 4 . Therefore, e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 . Hence, C C .
Conversely, if C C , then e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 e 4 C 4 e 2 C 2 e 3 C 3 e 4 C 4 . Since C i are the linear codes over F q such that e i C i = C ( m o d e i ) , for i = 1 , 2 , 3 , 4 . So C i C i , i = 1 , 2 , 3 , 4 . Therefore, x n α 0 ( m o d f 1 f 1 ) , x n ( α + β ) 0 ( m o d f 2 f 2 ) , x n ( α + γ ) 0 ( m o d f 3 f 3 ) and x n ( α + β + γ + δ ) 0 ( m o d f 4 f 4 ) . □
Corollary 4.
Let C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . Then C C if and only if C i C i , i = 1 , 2 , 3 , 4 .
Theorem 6.
Let C = e 1 C 1 e 2 C 2 e 3 C 3 e 4 C 4 be a ( α + u 1 β + u 2 γ + u 1 u 2 δ ) -constacyclic code of length n over R . If C i C i , i = 1 , 2 , 3 , 4 , then C C and there exists a quantum error-correcting code with parameters [ [ 4 n , 2 k 4 n , d L ] ] q , where d L denotes the minimum Lee weight of the code C and k denotes the dimension of the code ψ ( C ) .
Proof. 
Let C i C i for i = 1 , 2 , 3 , 4 . Then by the Corollary 4, C C . Now let x ψ ( C ) = ψ ( C ) then there exists y C such that x = ψ ( y ) where y · y = 0 for all y C . As C C and y C therefore y C . Hence, x = ψ ( y ) ψ ( C ) . Therefore, ψ ( C ) ψ ( C ) . As ψ ( C ) is a [ 4 n , k , d L ] linear code over F q 4 n . Then by Theorem 4, there exists a quantum error-correcting code with parameters [ [ 4 n , 2 k 4 n , d L ] ] q . □

6. Example

Example 1.
Let R = F 3 [ u 1 , u 2 ] / u 1 2 u 1 , u 2 2 u 2 , u 1 u 2 u 2 u 1 and n = 12 . We have
x 12 1 = ( 1 + x ) 3 ( 2 + x ) 3 ( 1 + x 2 ) 3 F 3 [ x ] ,
x 12 + 1 = ( 2 + x + x 2 ) 3 ( 2 + 2 x + x 2 ) 3 F 3 [ x ]
Let f 1 ( x ) = f 2 ( x ) = f 3 ( x ) = ( 1 + x 2 ) and f 4 ( x ) = ( 2 + x + x 2 ) . Then C 1 = C 2 = C 3 = 1 + x 2 are the cyclic codes over F 3 having the same parameters [ 12 , 10 , 2 ] and C 4 = 2 + x + x 2 is a negacyclic codes over F 3 with parameters [ 12 , 10 , 3 ] . Thus,
C = e 1 f 1 ( x ) , e 2 f 2 ( x ) , e 3 f 3 ( x ) , e 4 f 4 ( x )
is a ( 1 2 u 1 u 2 ) -constacyclic code of length 12 over R . Since all f i ( x ) f i ( x ) divide x 12 1 for i = 1 , 2 , 3 and f 4 ( x ) f 4 ( x ) divides x 12 + 1 , C C . Also, ψ ( C ) is a linear quasi constacyclic code over F 3 of index 4 with parameters [ 48 , 40 , 2 ] . Now, using Theorem 6, we get a quantum code with parameters [ [ 48 , 32 , 2 ] ] 3 .
Example 2.
Let R = F 5 [ u 1 , u 2 ] / u 1 2 u 1 , u 2 2 u 2 , u 1 u 2 u 2 u 1 and n = 15 . We have
x 15 1 = ( 4 + x ) 5 ( 1 + x + x 2 ) 5 F 5 [ x ] ,
x 15 + 1 = ( 1 + x ) 5 ( 1 + 4 x + x 2 ) 5 F 5 [ x ]
Let f 1 ( x ) = f 3 ( x ) = f 4 ( x ) = ( 1 + x + x 2 ) and f 2 ( x ) = ( 1 + 4 x + x 2 ) . Then C 1 = C 3 = C 4 = 1 + x + x 2 are the cyclic codes over F 5 having the same parameters [ 15 , 13 , 3 ] and C 2 = 1 + 4 x + x 2 is a negacyclic codes over F 5 with parameters [ 15 , 13 , 3 ] . Thus,
C = e 1 f 1 ( x ) , e 2 f 2 ( x ) , e 3 f 3 ( x ) , e 4 f 4 ( x )
is a ( 1 2 u 1 + 2 u 1 u 2 ) -constacyclic code of length 15 over R . Since all f i ( x ) f i ( x ) divide x 15 1 for i = 1 , 3 , 4 and f 2 ( x ) f 2 ( x ) divides x 15 + 1 , C C . Also, ψ ( C ) is a linear quasi constacyclic code over F 5 of index 4 with parameters [ 60 , 52 , 3 ] . Now, using Theorem 6, we get a quantum code with parameters [ [ 60 , 44 , 3 ] ] 5 .
Now, we find some new quantum error correcting codes over the field F 5 using the Gray images of ( 1 2 u 1 u 2 ) -constacyclic codes over the ring R = F 5 [ u 1 , u 2 ] / u 1 2 u 1 , u 2 2 u 2 , u 1 u 2 u 2 u 1 . First column of the following table denotes the length of cyclic codes over R , f i ( x ) are generator polynomials of codes C i for i = 1 , 2 , 3 , 4 , parameters of the Gray images of ( 1 2 u 1 u 2 ) -constacyclic codes over R are represented by column four and the parameters of the corresponding quantum codes are denoted by the last column.
Comparison Compared to previously known quantum error-correcting codes, some of our quantum error-correcting codes are new, e.g., the codes [ [ 60 , 52 , 2 ] ] 5 and [ [ 180 , 164 , 3 ] ] 5 have better parameters than the known quantum codes [ [ 60 , 48 , 2 ] ] 5 and [ [ 180 , 156 , 3 ] ] 5 , respectively in [21]. Also, the codes [ [ 88 , 68 , 6 ] ] 5 and [ [ 208 , 180 , 9 ] ] 5 have better parameters than the known quantum codes [ [ 93 , 69 , 6 ] ] 5 and [ [ 208 , 178 , 9 ] ] 5 , respectively in (https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHTab5.html).
In [22], minimum Hamming distance is restricted to d q + 1 , but in our case we can find the codes that have distances greater than q + 1 , for example, the codes [ [ 200 , 172 , 7 ] ] 5 and [ [ 208 , 180 , 9 ] ] 5 have the minimum Hamming distances greater than 6.

7. Conclusions

In this paper, we have studied properties of constacyclic codes over the ring F q [ u 1 , u 2 ] / u 1 2 u 1 , u 2 2 u 2 , u 1 u 2 u 2 u 1 . We have classified all self dual linear codes over F q using self duality condition of the units. As an application, we have obtained non binary quantum codes from these classes of codes using self duality condition. For future work, it would be interesting to compute quantum codes from other classes of constacyclic codes given in Table 2.

Author Contributions

Funding acquisition, A.N.A.; Supervision, M.A.; Writing-original draft, G.M.; Editing, M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under the grant no. (G:1422-130-1440). The authors, therefore, gratefully acknowledge DSR for technical and financial support.

Acknowledgments

The authors are thankful to the Reviewers for several useful comments and suggestions towards the improvement of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zhu, S.; Wang, Y.; Shi, M. Some results on cyclic codes over F2 + vF2. IEEE. Trans. Inform. Theory 2010, 56, 1680–1684. [Google Scholar] [CrossRef]
  2. Cengellenmis, Y. On the cyclic codes over F3 + vF3. Int. J. Algebra 2010, 4, 253–259. [Google Scholar]
  3. Zhu, S.; Wang, L. A class of constacyclic codes over Fp + vFp and its Gray image. Discret. Math. 2011, 311, 2677–2682. [Google Scholar] [CrossRef] [Green Version]
  4. Shor, P.W. Scheme for reducing decoherence in quantum memory. Phys. Rev. A 1995, 52, 2493–2496. [Google Scholar] [CrossRef] [PubMed]
  5. Calderbank, A.R.; Rains, E.M.; Shor, P.M.; Sloane, N.J.A. Quantum error-correction via codes over GF(4). IEEE Trans. Inf. Theory 1998, 44, 1369–1387. [Google Scholar] [CrossRef] [Green Version]
  6. Gottesman, D. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 1996, 54, 1862–1868. [Google Scholar] [CrossRef] [Green Version]
  7. Chen, B.; Ling, S.; Zhang, Y. Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 2015, 61, 1474–1484. [Google Scholar] [CrossRef] [Green Version]
  8. Liu, Y.; Li, R.; Lv, L.; Ma, Y. A class of constacyclic BCH codes and new quantum codes. Quantum Inf. Process 2017, 16, 66. [Google Scholar] [CrossRef]
  9. Kai, X.; Zhu, S. Quaternary construction of quantum codes from cyclic codes over F4 + uF4. Int. J. Quantum Inf. 2011, 9, 689–700. [Google Scholar] [CrossRef]
  10. Steane, A.M. Simple quantum error-correcting codes. Phys. Rev. A 1996, 54, 4741–4751. [Google Scholar] [CrossRef] [Green Version]
  11. Wang, L.; Zhu, S. New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 2015, 14, 881–889. [Google Scholar] [CrossRef] [Green Version]
  12. Ouyang, Y. Concatenated quantum codes can attain the quantum Gilbert-Varshamov bound. IEEE Trans. Inf. Theory 2014, 60, 311–3122. [Google Scholar] [CrossRef]
  13. Ashraf, M.; Mohammad, G. Quantum codes from cyclic codes over F3 + vF3. Int. J. Quantum Inf. 2014, 12, 1450042. [Google Scholar] [CrossRef]
  14. Ashraf, M.; Mohammad, G. Construction of quantum codes from cyclic codes over Fp + vFp. Int. J. Inf. Coding Theory 2015, 3, 137–144. [Google Scholar] [CrossRef]
  15. Dertli, A.; Cengellenmis, Y.; Eren, S. On quantum codes obtained from cyclic codes over A2. Int. J. Quantum Inf. 2015, 13, 1550031. [Google Scholar] [CrossRef]
  16. Dertli, A.; Cengellenmis, Y. Some results on the linear codes over the finite ring F2 + v1F2+⋯+vrF2. Int. J. Quantum Inf. 2016, 14, 1650012. [Google Scholar] [CrossRef]
  17. Dertli, A.; Cengellenmis, Y.; Eren, S. Quantum Codes Over F2 + uF2 + vF2. Palest. J. Math. 2015, 4, 547–552. [Google Scholar]
  18. Qian, J. Quantum codes from cyclic codes over F2 + vF2. J. Inf. Comput. Sci. 2013, 10, 1715–1722. [Google Scholar] [CrossRef]
  19. Gao, J.; Wang, Y. u-Constacyclic codes over Fp + uFp and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 2018, 17. [Google Scholar] [CrossRef]
  20. Ashraf, M.; Mohammad, G. Quantum codes from cyclic codes over Fq + uFq + vFq + uvFq. Quantum Inf. Process. 2016, 15, 4089–4098. [Google Scholar] [CrossRef]
  21. Ashraf, M.; Mohammad, G. Quantum codes over Fp from cyclic codes over Fp[u,v]/〈u2 − 1,v3v,uvvu〉. Cryptogr. Commun. 2018. [Google Scholar] [CrossRef]
  22. Grassl, M.; Rötteler, M. Quantum MDS codes over small fields. In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 1104–1108. [Google Scholar]
Table 1. Behaviour of C 1 , C 2 , C 3 and C 4 depending on ( α + u 1 β + u 2 γ + u 1 u 2 δ ) .
Table 1. Behaviour of C 1 , C 2 , C 3 and C 4 depending on ( α + u 1 β + u 2 γ + u 1 u 2 δ ) .
( α + u 1 β + u 2 γ + u 1 u 2 δ ) C 1 C 2 C 3 C 4
( α + u 1 β + u 2 γ + u 1 u 2 δ ) C 1 C 2 C 3 C 4
1CyclicCyclicCyclicCyclic
−1NegacyclicNegacyclicNegacyclicNegacyclic
1 2 u 1 CyclicNegacyclicCyclicCyclic
1 + 2 u 1 NegacyclicCyclicNegacyclicCyclic
1 2 u 2 CyclicNegacyclicCyclicNegacyclic
1 + 2 u 1 NegacyclicCyclicNegacyclicCyclic
1 2 u 1 u 2 CyclicCyclicCyclicNegacyclic
1 + 2 u 1 u 2 NegacyclicNegacyclicNegacyclicCyclic
1 2 u 1 + 2 u 1 u 2 CyclicNegacyclicCyclicCyclic
1 + 2 u 1 2 u 1 u 2 NegacyclicCyclicNegacyclicNegacyclic
1 2 u 2 + 2 u 1 u 2 CyclicCyclicNegacyclicCyclic
1 + 2 u 2 2 u 1 u 2 NegacyclicNegacyclicCyclicNegacyclic
1 2 u 1 2 u 2 + 2 u 1 u 2 CyclicNegacyclicNegacyclicNegacyclic
1 + 2 u 1 + 2 u 2 2 u 1 u 2 NegacyclicCyclicCyclicCyclic
1 2 u 1 2 u 2 + 4 u 1 u 2 CyclicNegacyclicNegacyclicCyclic
1 + 2 u 1 + 2 u 2 4 u 1 u 2 NegacyclicCyclicCyclicNegacyclic
Table 2. Parameters of Quantum Codes.
Table 2. Parameters of Quantum Codes.
n f 1 ( x ) = f 2 ( x ) = f 3 ( x ) f 4 ( x ) ψ ( C ) [ [ n , k , d ] ]
15 4 + x 1 + x [ 60 , 56 , 2 ] [ [ 60 , 52 , 2 ] ] 5
22 4 + x + x 2 + 4 x 3 + 2 x 4 + x 5 2 + 3 x + 2 x 2 + x 3 + 2 x 4 + x 5 [ 88 , 68 , 6 ] [ [ 88 , 48 , 6 ] ] 5
25 4 + x 1 + x [ 100 , 96 , 2 ] [ [ 100 , 92 , 2 ] ] 5
25 4 + x 4 + 2 x + x 2 [ 100 , 95 , 2 ] [ [ 100 , 90 , 2 ] ] 5
30 1 + x + x 2 1 + x [ 120 , 113 , 2 ] [ [ 120 , 106 , 2 ] ] 5
35 4 + x 1 + 4 x + x 2 + 4 x 3 + x 4 + 4 x 5 + x 6 [ 140 , 131 , 2 ] [ [ 140 , 122 , 2 ] ] 5
40 1 + x 2 + x 4 [ 160 , 153 , 2 ] [ [ 160 , 146 , 2 ] ] 5
45 1 + x + x 2 1 + 4 x + x 2 [ 180 , 172 , 3 ] [ [ 180 , 164 , 3 ] ] 5
45 1 + x + x 2 1 + x [ 180 , 173 , 2 ] [ [ 180 , 166 , 2 ] ] 5
50 1 + x 2 + x [ 200 , 196 , 2 ] [ [ 200 , 192 , 2 ] ] 5
50 ( 1 + x ) 4 ( 4 + x ) 2 ( 2 + x ) 4 ( 3 + x ) 2 [ 200 , 186 , 7 ] [ [ 200 , 172 , 7 ] ] 5
52 ( 1 + 4 x + x 3 + x 4 ) ( 4 + 2 x + x 3 + x 4 ) [ 208 , 194 , 9 ] [ [ 208 , 180 , 9 ] ] 5
× ( 1 + 2 x + 2 x 3 + x 4 ) × ( 4 + x + 2 x 3 + x 4 )
55 ( 4 + x + x 2 + 4 x 3 + 2 x 4 + x 5 ) ( 1 + 3 x + 4 x 2 + 4 x 3 + x 4 + x 5 ) [ 220 , 210 , 6 ] [ [ 220 , 200 , 6 ] ] 5

Share and Cite

MDPI and ACS Style

Alkenani, A.N.; Ashraf, M.; Mohammad, G. Quantum Codes from Constacyclic Codes over the Ring Fq[u1,u2]/〈 u 1 2 -u1, u 2 2 -u2,u1u2-u2u1〉. Mathematics 2020, 8, 781. https://doi.org/10.3390/math8050781

AMA Style

Alkenani AN, Ashraf M, Mohammad G. Quantum Codes from Constacyclic Codes over the Ring Fq[u1,u2]/〈 u 1 2 -u1, u 2 2 -u2,u1u2-u2u1〉. Mathematics. 2020; 8(5):781. https://doi.org/10.3390/math8050781

Chicago/Turabian Style

Alkenani, Ahmad N., Mohammad Ashraf, and Ghulam Mohammad. 2020. "Quantum Codes from Constacyclic Codes over the Ring Fq[u1,u2]/〈 u 1 2 -u1, u 2 2 -u2,u1u2-u2u1〉" Mathematics 8, no. 5: 781. https://doi.org/10.3390/math8050781

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop