A Class of Quantum Briot–Bouquet Differential Equations with Complex Coefficients
Abstract
:1. Introduction
2. Related Works
3. q-Differential Operator
- 1.
- 2.
- 3.
- 4.
4. q-Subordination Relations
5. Q-Differential Equations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kac, V. Ch. Pokman; Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Da Cruz, A.M.C.B.; Natalia, M. General quantum variational calculus. Stat. Optim. Inf. Comput. 2018, 6, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Cambyse, R.; Datta, N. Concentration of quantum states from quantum functional and transportation cost inequalities. J. Math. Phys. 2019, 60, 012202. [Google Scholar]
- Giacomo, D.P.; Trevisan, D. The conditional entropy power inequality for bosonic quantum systems. Commun. Math. Phys. 2018, 360, 639–662. [Google Scholar]
- Bharti, K.; Ray, M.; Varvitsiotis, A.; Warsi, N.A.; Cabello, A.; Kwek, L.C. Robust self-testing of quantum systems via noncontextuality inequalities. Phys. Rev. Lett. 2019, 122, 250403. [Google Scholar] [CrossRef] [Green Version]
- Fewster, C.J.; Eleni-Alexandra, K. Quantum strong energy inequalities. Phys. Rev. D 2019, 99, 045001. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.W.; Hadid, S.B.; Momani, S. Generalized Briot-Bouquet differential equation by a quantum difference operator in a complex domain. Int. J. Dyn. Control 2020, 1–10. [Google Scholar] [CrossRef]
- Mao, Q.P.; Wang, L.; Zhao, S.M. Decoy-state round-robin differential-phase-shift quantum key distribution with source errors. Quantum Inf. Process. 2020, 19, 56. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Grinshpan, A.Z. Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and nonoverlapping domains. In Handbook of Complex Analysis: Geometric Function Theory; Kühnau, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 273–332. [Google Scholar]
- Srivastava, H.M.; Bansal, D.E. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.W.; Darus, M. On a class of analytic functions associated to a complex domain concerning q-differential-difference operator. Adv. Differ. Equ. 2019, 2019, 515. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ul-Haq, M.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-Analogue of Differential Subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef] [Green Version]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Sàlàgean, G.S. Subclasses of univalent functions. In Complex Analysis-Fifth Romanian-Finnish Seminar; Springer: Berlin/Heidelberg, Germany, 1983; pp. 362–372. [Google Scholar]
- Dunkl, C.F. Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
- Genest, V.X.; Lapointe, A.; Vinet, L. The Dunkl-Coulomb problem in the plane. Phys. Lett. A 2015, 379, 923–927. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992. [Google Scholar]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Khatter, K.; Ravichandran, V.; Kumar, S.S. Starlike functions associated with exponential function and the lemniscate of Bernoulli. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 2019, 113, 233–253. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Revue Roumaine de Mathematiques Pures et Appliquees 2000, 45, 647–658. [Google Scholar]
- Uralegaddi, B.A.; Ganigi, M.D.; Sarangi, S.M. Univalent functions with positive coefficients. Tamkang J. Math 1994, 25, 225–230. [Google Scholar]
- Ibrahim, R.W.; Jahangiri, J.M. Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain. AIMS Math. 2019, 4, 1582–1595. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Elobaid, R.M.; Obaiys, S.J. Symmetric Conformable Fractional Derivative of Complex Variables. Mathematics 2020, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I.; Badar, R.S. On a class of quantum alpha-convex functions. J. Appl. Math. Inform. 2018, 36, 541–548. [Google Scholar]
- Ahuja, O.; Anand, S.; Jain, N.K. Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach. Mathematics 2020, 8, 623. [Google Scholar] [CrossRef]
- Arif, M.; Barkub, O.; Srivastava, H.M.; Abdullah, S.; Khan, S.A. Some Janowski Type Harmonic q-Starlike Functions Associated with Symmetrical Points. Mathematics 2020, 8, 629. [Google Scholar] [CrossRef]
Upper Solution | Graph | Polynomial | |
---|---|---|---|
-BBE (2) | Oscillation Solution | Graph |
---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, R.W.; Elobaid, R.M.; Obaiys, S.J. A Class of Quantum Briot–Bouquet Differential Equations with Complex Coefficients. Mathematics 2020, 8, 794. https://doi.org/10.3390/math8050794
Ibrahim RW, Elobaid RM, Obaiys SJ. A Class of Quantum Briot–Bouquet Differential Equations with Complex Coefficients. Mathematics. 2020; 8(5):794. https://doi.org/10.3390/math8050794
Chicago/Turabian StyleIbrahim, Rabha W., Rafida M. Elobaid, and Suzan J. Obaiys. 2020. "A Class of Quantum Briot–Bouquet Differential Equations with Complex Coefficients" Mathematics 8, no. 5: 794. https://doi.org/10.3390/math8050794
APA StyleIbrahim, R. W., Elobaid, R. M., & Obaiys, S. J. (2020). A Class of Quantum Briot–Bouquet Differential Equations with Complex Coefficients. Mathematics, 8(5), 794. https://doi.org/10.3390/math8050794