Fractional-Order Integral and Derivative Operators and Their Applications
- Operators of fractional calculus and their applications;
- Chaos and fractional dynamics;
- Fractional-order ODEs and PDEs;
- Fractional-order differintegral equations;
- Fractional-order integro-differential equations;
- Fractional-order integrals and fractional-order derivatives associated with special functions of mathematical physics and applied mathematics;
- Identities and inequalities involving fractional-order integrals and fractional-order derivatives;
- Dynamical systems based upon fractional calculus.
Funding
Conflicts of Interest
References
- Secer, A.; Altun, S. A New Operational Matrix of Fractional Derivatives to Solve Systems of Fractional Differential Equations via Legendre Wavelets. Mathematics 2018, 6, 238. [Google Scholar] [CrossRef] [Green Version]
- Nunokawa, M.; Sokół, J.; Cho, N.E. On a Length Problem for Univalent Functions. Mathematics 2018, 6, 266. [Google Scholar] [CrossRef] [Green Version]
- Secer, A.; Ozdemir, N.; Bayram, M. A Hermite Polynomial Approach for Solving the SIR Model of Epidemics. Mathematics 2018, 6, 305. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Cui, Y. The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition. Mathematics 2019, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Mahto, L.; Abbas, S.; Hafayed, M.; Srivastava, H.M. Approximate Controllability of Sub-Diffusion Equation with Impulsive Condition. Mathematics 2019, 7, 190. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Pandey, R.K.; Srivastava, H.M. Solving Non-Linear Fractional Variational Problems Using Jacobi Polynomials. Mathematics 2019, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- İlhan, O.A.; Kasimov, S.G.; Otaev, S.Q.; Baskonus, H.M. On the Solvability of a Mixed Problem for a High-Order Partial Differential Equation with Fractional Derivatives with Respect to Time, with Laplace Operators with Spatial Variables and Nonlocal Boundary Conditions in Sobolev Classes. Mathematics 2019, 7, 235. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Arifi, N.A.; Benchohra, M.; Zhou, Y. Random Coupled Hilfer and Hadamard Fractional Differential Systems in Generalized Banach Spaces. Mathematics 2019, 7, 285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, L. Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis. Mathematics 2019, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-Y.; Srivastava, R.; Tang, H. Third-Order Hankel and Toeplitz Determinants for Starlike Functions Connected with the Sine Function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Adegani, E.A.; Cho, N.E.; Jafari, M. Logarithmic Coefficients for Univalent Functions Defined by Subordination. Mathematics 2019, 7, 408. [Google Scholar] [CrossRef] [Green Version]
- Özarslan, M.A.; Ustaoğlu, C. Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics 2019, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some New Fractional-Calculus Connections between Mittag–Leffler Functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Gan, S.; Yuan, X.; Xiong, H.; Tian, A. Impact of Fractional Calculus on Correlation Coefficient between Available Potassium and Spectrum Data in Ground Hyperspectral and Landsat 8 Image. Mathematics 2019, 7, 488. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.M.A.; Carvalho, A.R.M.; Baleanu, D.; Srivastava, H.M. Efficacy of the Post-Exposure Prophylaxis and of the HIV Latent Reservoir in HIV Infection. Mathematics 2019, 7, 515. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains. Mathematics 2019, 7, 706. [Google Scholar] [CrossRef] [Green Version]
- Ul-Haq, M.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-Analogue of Differential Subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef] [Green Version]
- Djeddi, A.; Dib, D.; Azar, A.T.; Abdelmalek, S. Fractional Order Unknown Inputs Fuzzy Observer for Takagi–Sugeno Systems with Unmeasurable Premise Variables. Mathematics 2019, 7, 984. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Kirane, M.; Samet, B. Absence of Global Solutions for a Fractional in Time and Space Shallow-Water System. Mathematics 2019, 7, 1127. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Kumam, P.; Shah, K.; Borisut, P.; Sitthithakerngkiet, K.; Ahmed Demba, M. Stability Results for Implicit Fractional Pantograph Differential Equations via φ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition. Mathematics 2020, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Iwata, Y. Abstract Formulation of the Miura Transform. Mathematics 2020, 8, 747. [Google Scholar] [CrossRef]
- Srivastava, H.M. Mathematical Analysis and Applications; Printed Edition of the Special Issue “Mathematical Analysis and Applications”; Published in Axioms; MDPI Publishers: Basel, Switzerland, 2019; p. viii. 209p, ISBN: 978-3-03897-400-0 (Pbk); ISBN: 978-3-03897-401-7 (PDF). [Google Scholar]
- Srivastava, H.M. Integral Transforms and Operational Calculus; Printed Edition of the Special Issue “Integral Transforms and Operational Calculus”; Published in Symmetry; MDPI Publishers: Basel, Switzerland, 2019; ISBN: 978-3-03921-618-5 (Pbk); ISBN: 978-3-03921-619-2 (PDF). [Google Scholar]
- Srivastava, H.M. Operators of Fractional Calculus and Their Applications; Printed Edition of the Special Issue “Operators of Fractional Calculus and Their Applications”; Published in Mathematics; MDPI Publishers: Basel, Switzerland, 2019; p. viii. 125p, ISBN: 978-3-03897-340-9 (Pbk); ISBN: 978-3-03897-341-6 (PDF). [Google Scholar]
- Srivastava, H.M. Mathematical Analysis and Applications II; Printed Edition of the Special Issue “Mathematical Analysis and Applications II”; Published in Axioms; MDPI Publishers: Basel, Switzerland, 2020; p. viii. 215p, ISBN 978-3-03928-384-2 (Pbk); ISBN 978-3-03928-385-9 (PDF). [Google Scholar]
- Srivastava, H.M. Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis. Iran. J. Sci. Technol. Trans. A: Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M. Fractional-Order Integral and Derivative Operators and Their Applications. Mathematics 2020, 8, 1016. https://doi.org/10.3390/math8061016
Srivastava HM. Fractional-Order Integral and Derivative Operators and Their Applications. Mathematics. 2020; 8(6):1016. https://doi.org/10.3390/math8061016
Chicago/Turabian StyleSrivastava, Hari Mohan. 2020. "Fractional-Order Integral and Derivative Operators and Their Applications" Mathematics 8, no. 6: 1016. https://doi.org/10.3390/math8061016
APA StyleSrivastava, H. M. (2020). Fractional-Order Integral and Derivative Operators and Their Applications. Mathematics, 8(6), 1016. https://doi.org/10.3390/math8061016