New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean †
Abstract
:1. Introduction
2. Tools and Lemmas
3. Three Propositions
4. Proofs of Theorem 1 and 2
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1922. [Google Scholar]
- Yang, Z.-H.; Tian, J.-F. A class of completely mixed monotonic functions involving the gamma function with applications. Proc. Am. Math. Soc. 2018, 146, 4707–4721. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F.; Ha, M.-H. A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc. Am. Math. Soc. 2020, 148, 2163–2178. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F.; Wang, M.-K. A positive answer to Bhatia-Li conjecture on the monotonicity for a new mean in its parameter. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 126. [Google Scholar] [CrossRef]
- Neuman, E. Inequalities involving modified Bessel functions of the first kind. J. Math. Anal. Appl. 1992, 171, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Baricz, Á. Turán type inequalities for modified Bessel functions. Bull. Aust. Math. Soc. 2010, 82, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Segura, J. Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 2011, 374, 516–528. [Google Scholar] [CrossRef] [Green Version]
- Kokologiannaki, C.G. Bounds for functions involving ratios of modified Bessel functions. J. Math. Anal. Appl. 2012, 385, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Hornik, K.; Grün, B. Amos-type bounds for modified Bessel function ratios. J. Math. Anal. Appl. 2013, 408, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baricz, Á. Bounds for Turánians of modified Bessel functions. Expo. Math. 2015, 2015, 223–251. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Zheng, S.-Z. Sharp Bounds for the Ratio of Modified Bessel Functions. Mediterr. J. Math. 2017, 14, 169. [Google Scholar] [CrossRef] [Green Version]
- Toader, G. Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 1998, 218, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Shi, X.-T.; Liu, F.-F.; Yang, Z.-H. A Double Inequality for an Integral Mean in Terms of the Exponential And Logarithmic Means. ResearchGate Research. Available online: http://dx.doi.org/10.13140/RG.2.1.2353.6800 (accessed on 1 June 2015).
- Qi, F.; Shi, X.-T.; Liu, F.-F.; Yang, Z.-H. A double inequality for an integral mean in terms of the exponential and logarithmic means. Period Math. Hung. 2017, 75, 180–189. [Google Scholar] [CrossRef]
- Lin, T.-P. The power mean and the logarithmic mean. Am. Math. Mon. 1974, 81, 879–883. [Google Scholar] [CrossRef]
- Stolarsky, K.B. Generalizations of the Logarithmic Mean. Math. Mag. 1975, 48, 87–92. [Google Scholar] [CrossRef]
- Páles, Z. Inequalities for differences of powers. J. Math. Anal. Appl. 1988, 131, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhu, Y.-R.; Cheung, W.-S. N-tuple Diamond-Alpha integral and inequalities on time scales. N-tuple Diamond-Alpha integral and inequalities on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 2189–2200. [Google Scholar] [CrossRef]
- Hu, X.-M.; Tian, J.-F.; Chu, Y.-M.; Lu, Y.-X. On Cauchy-Schwarz inequality for N-tuple Diamond-Alpha integral. J. Inequal. Appl. 2020, 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H. On the log-convexity of two-parameter homogeneous functions. Math. Inequal. Appl. 2007, 10, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H. On the monotonicity and log-convexity of a four-parameter homogeneous mean. J. Inequal. Appl. 2008, 2008, 49286. [Google Scholar] [CrossRef] [Green Version]
- Alzer, H. Ungleichungen für Mittelwerte. Arch. Math. 1986, 47, 422–426. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. On approximating the modified Bessel function of the first kind and Toader-Qi mean. J. Inequal. Appl. 2016, 2016, 40. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Chu, Y.-M.; Song, Y.-Q. Sharp bounds for Toader-Qi mean in terms of logarithmic and identric means. Math. Inequal. Appl. 2016, 19, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Chu, Y.-M. A sharp lower bound for Toader-Qi mean with applications. J. Funct. Space. 2016, 2016, 4165601. [Google Scholar] [CrossRef]
- Qian, W.-M.; Zhang, X.-H.; Chu, Y.-M. Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 2017, 11, 121–127. [Google Scholar] [CrossRef]
- Biernacki, M.; Krzyz, J. On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Sklodowska 1955, 9, 135–147. [Google Scholar]
- Yang, Z.-H.; Chu, Y.-M.; Wang, M.-K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015, 428, 587–604. [Google Scholar] [CrossRef]
- Wang, M.-K.; Chu, Y.-M.; Song, Y.-Q. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math.Comput. 2016, 276, 44–60. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. A monotonicity property involving the generalized elliptic integrals of the first kind. Math. Inequal. Appl. 2017, 20, 729–735. [Google Scholar]
- Yang, Z.-H.; Zheng, S.-Z. Monotonicity and convexity of the ratios of the first kind modified Bessel functions and applications. Math. Inequal. Appl. 2018, 21, 107–125. [Google Scholar]
- Yang, Z.-H.; Tian, J. Sharp inequalities for the generalized elliptic integrals of the first kind. Ramanujan J. 2019, 48, 91–116. [Google Scholar] [CrossRef]
- Anderson, G.D.; Vamanamurthy, M.; Vuorinen, M. Monotonicity rules in calculus. Am. Math. Mon. 2006, 113, 805–816. [Google Scholar] [CrossRef]
- Pólya, G.; Szegö, G. Problems and Theorems in Analysis I: Series. Integral Calculus, Theory of Functions; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1998. [Google Scholar]
- Li, Y.-M.; Long, B.-Y.; Chu, Y.-M. Sharp bounds by the power mean for the generalized Heronian mean. J. Inequal. Appl. 2012, 2012, 129. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications: New York, NY, USA; Washington, DC, USA, 1972. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.-H.; Tian, J.-F.; Zhu, Y.-R. New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean. Mathematics 2020, 8, 901. https://doi.org/10.3390/math8060901
Yang Z-H, Tian J-F, Zhu Y-R. New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean. Mathematics. 2020; 8(6):901. https://doi.org/10.3390/math8060901
Chicago/Turabian StyleYang, Zhen-Hang, Jing-Feng Tian, and Ya-Ru Zhu. 2020. "New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean" Mathematics 8, no. 6: 901. https://doi.org/10.3390/math8060901
APA StyleYang, Z. -H., Tian, J. -F., & Zhu, Y. -R. (2020). New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean. Mathematics, 8(6), 901. https://doi.org/10.3390/math8060901