A Family of Theta-Function Identities Based upon Combinatorial Partition Identities Related to Jacobi’s Triple-Product Identity
Abstract
:1. Introduction and Definitions
- I.
- If
- II.
- If
- III.
- If
- IV.
- If
- V.
- If
- VI.
- If
2. A Set of Main Results
3. Applications Based upon Ramanujan’s Continued-Fraction Identities
4. Connections with Combinatorial Partition-Theoretic Identities
5. An Open Problem
6. Concluding Remarks and Observations
Author Contributions
Funding
Conflicts of Interest
References
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhäuser/Springer: Basel, Switzerland, 2012. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: Sydney, Australia; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ramanujan, S. Notebooks; Tata Institute of Fundamental Research: Bombay, India, 1957; Volumes 1 and 2. [Google Scholar]
- Ramanujan, S. The Lost Notebook and Other Unpublished Papers; Narosa Publishing House: New Delhi, India, 1988. [Google Scholar]
- Berndt, B.C. Ramanujan’s Notebooks; Part III; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991. [Google Scholar]
- Srivastava, H.M.; Chaudhary, M.P. Some relationships between q-product identities, combinatorial partition identities and continued-fraction identities. Adv. Stud. Contemp. Math. 2015, 25, 265–272. [Google Scholar]
- Baruah, N.D.; Bora, J. Modular relations for the nonic analogues of the Rogers-Ramanujan functions with applications to partitions. J. Number Theory 2008, 128, 175–206. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, C.G.J. Fundamenta Nova Theoriae Functionum Ellipticarum; Regiomonti, Sumtibus Fratrum Bornträger: Königsberg, Germany, 1829; Reprinted in Gesammelte Mathematische Werke 1829, 1, 497–538; American Mathematical Society: Providence, RI, USA, 1969; pp. 97–239. [Google Scholar]
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 6th ed.; Oxford University Press: London, UK; New York, NY, USA, 2008. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Undergraduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Chaudhary, M.P. Generalization of Ramanujan’s identities in terms of q-products and continued fractions. Glob. J. Sci. Front. Res. Math. Decis. Sci. 2012, 12, 53–60. [Google Scholar]
- Andrews, G.E.; Bringman, K.; Mahlburg, K.E. Double series representations for Schur’s partition function and related identities. J. Combin. Theory Ser. A 2015, 132, 102–119. [Google Scholar] [CrossRef]
- Chaudhary, M.P. Some relationships between q-product identities, combinatorial partition identities and continued-fractions identities. III. Pac. J. Appl. Math. 2015, 7, 87–95. [Google Scholar]
- Chaudhary, M.P.; Chaudhary, S. Note on Ramanujan’s modular equations of degrees three and nine. Pac. J. Appl. Math. 2017, 8, 143–148. [Google Scholar]
- Chaudhary, M.P.; Chaudhary, S.; Choi, J. Certain identities associated with 3-dissection property, continued fractions and combinatorial partition. Appl. Math. Sci. 2016, 10, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, M.P.; Chaudhary, S.; Choi, J. Note on Ramanujan’s modular equation of degree seven. Int. J. Math. Anal. 2016, 10, 661–667. [Google Scholar] [CrossRef]
- Chaudhary, M.P.; Choi, J. Note on modular relations for Roger-Ramanujan type identities and representations for Jacobi identities. East Asian Math. J. 2015, 31, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, M.P.; Choi, J. Certain identities associated with Eisenstein series, Ramanujan-Göllnitz-Gordon continued fraction and combinatorial partition identities. Int. J. Math. Anal. 2016, 10, 237–244. [Google Scholar] [CrossRef]
- Chaudhary, M.P.; Choi, J. Certain identities associated with character formulas, continued fraction and combinatorial partition identities. East Asian Math. J. 2016, 32, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, M.P.; Uddin, S.; Choi, J. Certain relationships between q-product identities, combinatorial partition identities and continued-fraction identities. Far East J. Math. Sci. 2017, 101, 973–982. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Chaudhary, M.P.; Chaudhary, S. Some theta-function identities related to Jacobi’s triple-product identity. Eur. J. Pure Appl. Math. 2018, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Chaudhary, M.P.; Chaudhary, S. A family of theta-function identities related to Jacobi’s triple-product identity. Russ. J. Math. Phys. 2020, 27, 139–144. [Google Scholar] [CrossRef]
- Hahn, H.-Y.; Huh, J.-S.; Lim, E.-S.; Sohn, J.-B. From partition identities to a combinatorial approach to explicit Satake inversion. Ann. Combin. 2018, 22, 543–562. [Google Scholar] [CrossRef] [Green Version]
- Baruah, N.D.; Saikia, N. Two parameters for Ramanujan’s theta-functions and their explicit values. Rocky Mt. J. Math. 2007, 37, 1747–1790. [Google Scholar] [CrossRef]
- Naika, M.S.M.; Dharmendra, B.N.; Shivashankar, K. A continued fraction of order twelve. Cent. Eur. J. Math. 2008, 6, 393–404. [Google Scholar] [CrossRef]
- Adiga, C.; Bulkhali, N.A.S.; Simsek, Y.; Srivastava, H.M. A continued fraction of Ramanujan and some Ramanujan-Weber class invariants. Filomat 2017, 31, 3975–3997. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saikia, N. Some congruences for overpartitions with restriction. Math. Notes 2020, 107, 488–498. [Google Scholar] [CrossRef]
- Liu, Z.-G. A three-term theta function identity and its applications. Adv. Math. 2005, 195, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.-H. Theta-function identities and the explicit formulas for theta-function and their applications. J. Math. Anal. Appl. 2004, 292, 381–400. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Singh, S.N.; Singh, S.P. Some families of q-series identities and associated continued fractions. Theory Appl. Math. Comput. Sci. 2015, 5, 203–212. [Google Scholar]
- Munagi, A.O. Combinatorial identities for restricted set partitions. Discret. Math. 2016, 339, 1306–1314. [Google Scholar] [CrossRef]
- Yee, A.-J. Combinatorial proofs of generating function identities for F-partitions. J. Combin. Theory Ser. A 2003, 102, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.E. The Theory of Partitions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1998. [Google Scholar]
- Schur, I. Zur Additiven Zahlentheorie; Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl.: Berlin, Germany, 1926. [Google Scholar]
- Alladi, K.; Berkovich, A. Göllnitz–Gordon partitions with weights and parity conditions. In Zeta Functions, Topology and Quantum Physics; Springer Series on Developments in Mathematics; Springer: New York, NY, USA, 2005; Volume 14, pp. 1–17. [Google Scholar]
- Adiga, C.; Bulkhali, N.A.S.; Ranganatha, D.; Srivastava, H.M. Some new modular relations for the Rogers–Ramanujan type functions of order eleven with applications to partitions. J. Number Theory 2016, 158, 281–297. [Google Scholar] [CrossRef]
- Cao, J.; Srivastava, H.M.; Luo, Z.-G. Some iterated fractional q-integrals and their applications. Fract. Calc. Appl. Anal. 2018, 21, 672–695. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some formulas of Srinivasa Ramanujan involving products of hypergeometric functions. Indian J. Math. (Ramanujan Centen. Vol.) 1987, 29, 91–100. [Google Scholar]
- Srivastava, H.M. A note on a generalization of a q-series transformation of Ramanujan. Proc. Jpn. Acad. Ser. A Math. Sci. 1987, 63, 143–145. [Google Scholar] [CrossRef]
- Srivastava, H.M. Srinivasa Ramanujan and generalized basic hypergeometric functions. Serdica (Academician Ljubomir G. Iliev Dedication Vol.) 1993, 19, 191–197. [Google Scholar]
- Srivastava, H.M.; Zhang, C.-H. A certain class of identities of the Rogers–Ramanujan type. Pan Am. Math. J. 2009, 19, 89–102. [Google Scholar]
- Srivastava, H.M.; Arjika, S.; Kelil, A.S. Some homogeneous q-difference operators and the associated generalized Hahn polynomials. Appl. Set-Valued Anal. Optim. 2019, 1, 187–201. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Srivastava, R.; Chaudhary, M.P.; Uddin, S. A Family of Theta-Function Identities Based upon Combinatorial Partition Identities Related to Jacobi’s Triple-Product Identity. Mathematics 2020, 8, 918. https://doi.org/10.3390/math8060918
Srivastava HM, Srivastava R, Chaudhary MP, Uddin S. A Family of Theta-Function Identities Based upon Combinatorial Partition Identities Related to Jacobi’s Triple-Product Identity. Mathematics. 2020; 8(6):918. https://doi.org/10.3390/math8060918
Chicago/Turabian StyleSrivastava, Hari Mohan, Rekha Srivastava, Mahendra Pal Chaudhary, and Salah Uddin. 2020. "A Family of Theta-Function Identities Based upon Combinatorial Partition Identities Related to Jacobi’s Triple-Product Identity" Mathematics 8, no. 6: 918. https://doi.org/10.3390/math8060918