Some New Fuzzy Fixed Point Results with Applications
Abstract
:1. Introduction and Preliminaries
- (i)
- for any
- (ii)
- (iii)
- for any
- (iv)
- (v)
- (vi)
- (vii)
- (viii))
- is continuous in its variables.
- ()
- F is strictly increasing;
- ()
- ∀, ⟺
- ()
- ∃ such that
- ()
- for each sequence of positive numbers such that ∀ and some , then for all and
- ()
- ()
- is sub-homogeneous, that is, for all and we have
- ()
- is a non-decreasing function, i.e, for we get
2. Results and Discussion
3. Applications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heilpern, S. Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 1981, 83, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Azam, A.; Romaguera, S. On locally contractive fuzzy set-valued mappings. J. Inequal. Appl. 2014, 2014, 74. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Al-Mazrooei, A.E.; Altun, I. Generalized Θ-contractive fuzzy mappings. J. Intell. Fuzzy Syst. 2018, 35, 1935–1942. [Google Scholar] [CrossRef]
- Al-Mazrooei, A.E.; Ahmad, J. Fixed Point Theorems for Fuzzy Mappings with Applications. J. Intell. Fuzzy Syst. 2019, 36, 3903–3909. [Google Scholar] [CrossRef]
- Al-Mazrooei, A.E.; Ahmad, J. Fuzzy fixed point results of generalized almost F-contraction. J. Math. Comput. Sci. 2018, 18, 206–215. [Google Scholar] [CrossRef]
- Azam, A.; Beg, I. Common fixed points of fuzzy maps. Math. Comput. Model. 2009, 49, 1331–1336. [Google Scholar] [CrossRef]
- Azam, A.; Arshad, M.; Vetro, P. On a pair of fuzzy φ-contractive mappings. Math. Comput. Model. 2010, 52, 207–214. [Google Scholar] [CrossRef]
- Azam, A. Fuzzy Fixed Points of Fuzzy Mappings via a Rational Inequality. Hacettepe J. Math. Stat. 2011, 40, 421–431. [Google Scholar]
- Bose, R.K.; Sahani, D. Fuzzy mappings and fixed point theorems. Fuzzy Sets Syst. 1987, 21, 53–58. [Google Scholar] [CrossRef]
- Chang, S.S.; Cho, Y.J.; Lee, B.S.; Jung, J.S.; Kang, S.M. Coincidence point and minimization theorems in fuzzy metric spaces. Fuzzy Sets Syst. 1997, 88, 119–128. [Google Scholar] [CrossRef]
- Saleh, H.N.; Khan, I.A.; Imdad, M.; Alfaqih, W.M. New fuzzy φ-fixed point results employing a new class of fuzzy contractive mappings. J. Intell. Fuzzy Syst. 2019, 37, 5391–5402. [Google Scholar] [CrossRef]
- Sayed, A.F.; Ahmad, A. Some fixed point theorems for fuzzy soft contractive mappings in fuzzy soft metric spaces. Ital. J. Pure Appl. Math. 2018, 40, 200–214. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostraviensis. 1993, 1, 5–11. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Khamsi, M.A.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. 2010, 73, 3123–3129. [Google Scholar] [CrossRef]
- Hussain, N.; Saadati, R.; Agarwal, R.P. On the topology and wt-distance on metric type spaces. Fixed Point Theory Appl. 2014, 2014, 88. [Google Scholar] [CrossRef] [Green Version]
- Czerwik, S.; Dlutek, K.; Singh, S.L. Round-off stability of iteration procedures for operators in b-metric spaces. J. Nat. Phys. Sci. 1997, 11, 87–94. [Google Scholar]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Aydi, H.; Mlaiki, N. Fuzzy fixed points of fuzzy mappings via F-contractions and an applications. J. Intell. Fuzzy Syst. 2019, 38, 1–7. [Google Scholar] [CrossRef]
- Imdad, M.; Khan, A.R.; Saleh, H.N.; Alfaqih, W.M. Some φ-Fixed Point Results for (F,φ,α-ψ)-Contractive Type Mappings with Applications. Mathematics 2019, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Sgroi, M.; Vetro, C. Multivalued F-contractions and the solution of certain functional and integral equations. Filomat 2013, 27, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Ahmad, J.; Azam, A. On Suzuki-Wardowski type fixed point theorems. J. Nonlinear Sci. Appl. 2015, 8, 1095–1111. [Google Scholar] [CrossRef]
- Hussain, N.; Ahmad, J.; Azam, A. Generalized fixed point theorems for multi-valued α-ψ contractive mappings. J. Inequal. Appl. 2014, 2014, 348. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, M.; Jleli, M.; Samet, B.; Vetro, C. Solvability of integrodifferential problems via fixed point theory in b-metric spaces. Fixed Point Theory Appl. 2015, 2015, 70. [Google Scholar] [CrossRef] [Green Version]
- Constantin, A. A random fixed point theorem for multifunctions. Stochastic Anal. Appl. 1994, 12, 65–73. [Google Scholar] [CrossRef]
- Isik, H. Fractional Differential Inclusions with a New Class of Set-Valued Contractions. Available online: https://arxiv.org/abs/1807.05427v1 (accessed on 12 July 2018).
- Shahzad, A.; Shoaib, A.; Mehmood, Q. Common fixed point theorems for fuzzy mappings in b-metric space. Ital. J. Pure Appl. Math. 2017, 38, 419–427. [Google Scholar]
- Sîntamarian, A. Integral inclusions of Fredholm type relative to multivalued φ-contractions. Semin. Fixed Point Theory Cluj Napoca 2002, 3, 361–368. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mezel, S.A.; Ahmad, J.; De La Sen, M. Some New Fuzzy Fixed Point Results with Applications. Mathematics 2020, 8, 995. https://doi.org/10.3390/math8060995
Al-Mezel SA, Ahmad J, De La Sen M. Some New Fuzzy Fixed Point Results with Applications. Mathematics. 2020; 8(6):995. https://doi.org/10.3390/math8060995
Chicago/Turabian StyleAl-Mezel, Saleh Abdullah, Jamshaid Ahmad, and Manuel De La Sen. 2020. "Some New Fuzzy Fixed Point Results with Applications" Mathematics 8, no. 6: 995. https://doi.org/10.3390/math8060995
APA StyleAl-Mezel, S. A., Ahmad, J., & De La Sen, M. (2020). Some New Fuzzy Fixed Point Results with Applications. Mathematics, 8(6), 995. https://doi.org/10.3390/math8060995