Next Article in Journal
Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods
Next Article in Special Issue
Perturbation Theory for Quasinilpotents in Banach Algebras
Previous Article in Journal
Information Privacy Protection under Anti-Money Laundering Legislation: An Empirical Study in Taiwan
Previous Article in Special Issue
Coupled Systems of Nonlinear Integer and Fractional Differential Equations with Multi-Point and Multi-Strip Boundary Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection

1
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
2
Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China
Mathematics 2020, 8(7), 1049; https://doi.org/10.3390/math8071049
Submission received: 26 May 2020 / Revised: 17 June 2020 / Accepted: 26 June 2020 / Published: 30 June 2020
(This article belongs to the Special Issue Modern Analysis and Partial Differential Equation)

Abstract

:
This paper is concerned with the nonlinear stability and instability of the two-dimensional (2D) Boussinesq-MHD equations around the equilibrium state ( u ¯ = 0 , B ¯ = 0 , θ ¯ = θ 0 ( y ) ) with the temperature-dependent fluid viscosity, thermal diffusivity and electrical conductivity in a channel. We prove that if a + a , and d 2 d y 2 κ ( θ 0 ( y ) ) 0 or 0 < d 2 d y 2 κ ( θ 0 ( y ) ) β 0 , with β 0 > 0 small enough constant, and then this equilibrium state is nonlinearly asymptotically stable, and if a + < a , this equilibrium state is nonlinearly unstable. Here, a + and a are the values of the equilibrium temperature θ 0 ( y ) on the upper and lower boundary.
AMS Subject Classification:
35Q35; 76E20

1. Introduction

1.1. Background

In this paper, we consider the Boussinesq equations for Magnetohydrodynamics (MHD) convection in a channel Ω
t θ + u · θ div ( κ ( θ ) θ ) ) = 0 , t u + u · u div ( μ ( θ ) u ) + Π = g θ e 2 + B · B , t B + u · B ( γ ( θ ) · B ) = B · u , div u = 0 , div B = 0 , ( θ , u , B ) | t = 0 = ( θ 0 , u 0 , B 0 ) .
Here, e 2 = ( 0 , 1 ) , = ( 2 , 1 ) , the domain Ω = R × ( , ) with the constant 0 < < . The unknowns are the temperature θ , the velocity field u = ( u 1 , u 2 ) , the magnetic field B = ( B 1 , B 2 ) , and the pressure Π . This system can be used to model the large scale cosmic magnetic fields that are maintained by hydromagnetic dynamos. Physically, the first equation of (1) means that the temperature provides the convective drive of the system. The second equation describes the conservation law of the momentum with the effect of the buoyancy force g θ e 2 . The third equation shows that the electromagnetic field is governed by the Maxwell equation. Here, we denote σ ( θ ) by the electrical conductivity, μ ( θ ) the fluid viscosity, and κ ( θ ) the thermal diffusivity. Additionally, assume that they are positive and smooth in θ
c μ ( θ ) , γ ( θ ) , κ ( θ ) C ,
with c and C two positive constants.
We may refer to [1,2,3] and the references therein to learn more about physics details and numerical simulations. Hereafter, we will use the system as the Boussinesq-MHD system, MHD-Boussinesq, or BMHD for short.
When the fluid is not affected by the temperature, the system (1) reduces to the MHD system. Many physicists and mathematicians considered this model. For example, Duvaut and Lions [4] established the local well-posedness in H s ( R d ) with s d , and got global existence of small solutions. Sermange and Temam [5] studied these solutions’ properties and proved that the two-dimensional (2D) local strong solution is global and unique. Recently, many authors studied the global regularity of the MHD system with partial dissipation (see, e.g., [6,7,8,9]).
When the fluid is not affected by the magnetic field, the system (1) becomes the classical Boussinesq system. Many authors studied the Cauchy problem of the 2D Boussinesq system in the presence of full viscosity. Cannon and Dibenedetto [10] and Wang and Zhang [11] proved the global well-posedness for the full viscosity and smooth initial data case. Lately, many works are devoted to studying the Boussinesq system with partial constant viscosity. For example, the global well-posedness of the system in the absence of diffusion has been independently proven by Chae [12] and Hou and Li [13], and Chae [12] also studied the case μ = 0 . The global well-posedness of the system in the critical spaces in the absence of diffusion has been established by Abidi and Hmidi [14], and the global well-posedness of the system in the critical spaces in the case μ = 0 has been proved by Hmidi and Keraani [15]. For the bounded domain case, the global well-posedness for the system in the absence of diffusion has been proved by Lai, Pan and Zhao [16]. Lately, the well-posedness of global strong solutions for the system in the presence of temperature-dependent diffusion with large initial data in Sobolev spaces has been shown by Li and Xu [17].
For the three-dimensional (3D) Boussinesq and MHD system, the existence of global weak solution for L 2 initial data and the well-posedness for global small smooth data for the Cauchy problem of the Boussinesq system has been proved by Danchin and Paicu [18]. The global well-posedness for the Cauchy problem of the 3D axisymmetric Boussinesq system in the absence of swirl has been shown by Hmidi and Rousset [19,20]. The partial regularity of the weak solutions for the 3D Boussinesq system has been studied by Fang, Liu, and Qian [21]. For the 3D MHD equations, the well-posedness of global axially symmetric solutions in the presence of full fluid viscosity and magnetic diffusion has been studied by Lei [22]. The partial regularity of the weak solutions for the 3D MHD system has been established by Cao and Wu [23], He and Xin [24,25], and Kang and Lee [26]. The well-posedness of global small solution has been proven by Cai and Lei [27] and He, Xu and Yu [28]. For the 3D MHD system in the presence of a nonlinear damping term, the existence of global weak solutions and well-posedness of global smooth solutions for large initial data has been recently proven by Titi and Trabelsi [29].
For the full BMHD system, Bian et al. [30,31,32] and Yu and Pei [33] studied the global existence and uniqueness of the solution to the 2D BMHD system without smallness assumptions on the initial data. For the 3D case, Larios-Pei [34] proved the local well-posedness in the Sobolev space H 3 . Zhai and Chen [35] considered the Cauchy problem for BMHD system in Besov space. Bian et al. [36,37] proved the global well-posedness result for the axisymmetric BMHD system without magnetic diffusion and heat convection, and global well-posedness result for the BMHD system with a nonlinear damping term, the constant fluid viscosity, and the constant electrical conductivity. Li [38] obtained the global weak solution for the inviscid BMHD system with the constant thermal diffusivity and constant electrical conductivity. However, it is not known whether nonlinear stability and instability for the full system (1) holds with the fluid viscosity, electrical conductivity, as well as thermal diffusivity dependent on temperature around the equilibrium state ( θ ¯ , u ¯ , B ¯ ) = ( θ 0 ( y ) , 0 , 0 ) . In this paper, we will give the precise answers to the above question for the full system (1).

1.2. Steady State and Main Results

For notational simplicity, we denote the gravity unit g = 1 . In this paper, we assume the boundary conditions
u | Ω = 0 , θ | y = ± = a ± , B · n | Ω = 0 , ( × B ) × n | Ω = 0 .
Let θ 0 ( y ) be a smooth function on [ , ] . Then the functions ( θ ¯ , u ¯ , B ¯ ) = ( θ 0 ( y ) , 0 , 0 ) define a equilibrium state to (1), provided
Π 0 = θ 0 ( y ) e 2 , d d y κ ( θ 0 ( y ) ) d d y θ 0 ( y ) = 0 ,
which gives that Π 0 = Π 0 ( y ) and
d d y Π 0 = θ 0 ( y ) , d d y θ 0 ( y ) = m 0 κ ( θ 0 ) ,
for some constant m 0 .
Integrating the above equation about the temperature, it follows from the condition (2) and the boundary conditions (3) that
a + > a m 0 > 0 ,
and in this case, we set m 0 = 1 for notational simplicity. Similarly, one has
a + < a m 0 < 0 ,
and, for this case, we set m 0 = 1 for notational simplicity.
Now, define the perturbation to be
σ = θ θ 0 , u = u u ¯ , b = B B ¯ = B , p = Π Π 0 ,
which satisfies the system:
t σ + u · σ div ( κ ( θ 0 + σ ) σ ) y ( κ ( θ 0 + σ ) d d y θ 0 ) ) + u 2 d d y θ 0 ( y ) = 0 , t u + u · u div ( μ ( θ 0 + σ ) u ) + p = σ e 2 + b · b , t b + u · b ( γ ( θ 0 + σ ) · b ) = b · u , div u = 0 , div b = 0 .
From the physical point of view, the sign of d d y θ 0 ( y ) that appears in the equation for the temperature σ is critical (cf. [39]). For the case d d y θ 0 ( y ) < 0 , the situation is unstable. While, for the case d d y θ 0 ( y ) > 0 in the fluid with homogeneous thermal diffusivity, the density decreases with height and the heavier fluid is below lighter fluid. This is the situation of stable stratification, and the quantity N ( y ) = def d d y θ 0 ( y ) is called the buoyancy or Brunt-Väisärä frequency (stratification-parameter) [39,40].
The situation for the case d d y θ 0 ( y ) < 0 is closely related to the Rayleigh–Taylor instability according to the well-known Boussinesq approximation, where the temperature difference is directly proportional to the density difference between the bottom and top of the layer of fluid. The Rayleigh–Taylor instability appears when a heavy fluid is on top of a light one. The linear instability for the incompressible fluid was first established by Rayleigh in 1883 [41] and Chandrasekhar in 1981 [42]. Grenier [43] gave some examples of nonlinearly unstable solutions of Euler equations and proved an instability result for Prandtl equations. Recently, Hwang and Guo [44] obtained the nonlinear Rayleigh–Taylor instability for the inviscid incompressible fluid. Guo and Tice [45,46] proved the linear Rayleigh–Taylor instability for inviscid and viscous compressible fluids by introducing a new variational method. Later on, using the new variational method, many authors considered the effects of magnetic field in the fluid equations, see Jiang-Jiang [47,48,49].
This paper is concerned with the nonlinear stability and instability for the full BMHD system with the temperature-dependent fluid viscosity, thermal diffusivity, and electrical conductivity. Our results are as follows.
Theorem 1.
Assume that the function θ 0 ( y ) C 4 ( [ , ] ) satisfies the boundary condition θ 0 ( y = ± ) = a ± , and the three functions κ, μ and γ satisfy (2). Subsequently, we have
(i) If a + < a , then the equilibrium state ( θ 0 ( y ) , 0 , 0 ) in (1) is nonlinearly unstable, which is, there exists ε 0 > 0 , such that, for any small δ > 0 , there exists a family of classical solutions ( θ δ , u δ , B δ ) to (1), such that
θ 0 δ θ 0 H 2 ( Ω ) + ( u 0 δ , B 0 δ ) H 2 ( Ω ) δ ,
but for T δ = O ( | ln δ | ) ,
sup 0 t T δ { θ δ θ 0 L 2 ( Ω ) ) + ( u δ , B δ ) L 2 ( Ω ) } ε 0 .
(ii) If a + > a , and d 2 d y 2 κ ( θ 0 ( y ) ) 0 or 0 < d 2 d y 2 κ ( θ 0 ( y ) ) β 0 , with β 0 > 0 small enough constant, then the equilibrium state ( θ 0 ( y ) , 0 , 0 ) in (1) is nonlinearly asymptotically stable, that is, there exists δ 0 > 0 , such that, for any δ ( 0 , δ 0 ) , if
( θ 0 δ θ 0 , u 0 δ , B 0 δ ) H 2 ( Ω ) δ ,
then ( θ 0 δ , u 0 δ , B 0 δ ) generates a global unique solution ( θ δ , u δ , B δ ) to the system (1). Moreover, it holds
lim t + ( θ δ θ 0 , u δ , B δ ) H 2 ( Ω ) = 0 .
Remark 1.
For the case a + = a , the equilibirum state ( θ 0 ( y ) , 0 , 0 ) is stable. In fact, if a + = a , then m 0 = 0 , that is, θ 0 = C , we set θ 0 = 1 , which do not change the result in our analysis. Thus, our perturbation problem can be reformulated in the following:
t σ + u · σ · ( κ ( σ + 1 ) σ ) = 0 , t u + u · u · ( μ ( σ + 1 ) u ) + p = σ e 2 + b · b , t b + u · b ( γ ( σ + 1 ) · b ) = b · u , · u = 0 , · b = 0 ,
where σ = θ 1 , u = u , b = B , p = Π Π 0 is the perturbation.
From (6), repeating the process of stability in Section 6, we only need to control Ω σ e 2 u d x d y . Note that
Ω σ 2 d x d y + 0 t Ω κ ( σ + 1 ) | σ | 2 d x d y d s = Ω σ 0 2 d x d y .
By the assumption in (ii) of Theorem 1 and Poincare inequality for a strip, we know that
σ 2 δ , Ω | u 2 | 2 d x d y C Ω | y u 2 | 2 d y d x .
Hence, choose δ small enough, Ω σ e 2 u d x d y can be controlled by Ω μ ( σ + 1 ) | u | 2 d x d y .
Remark 2.
Our result also holds for the incompressible 3-D BMHD system.
Notations: The space H div 1 is defined as H d i v 1 = { u H 1 : d i v u = 0 } and this rule of definition is applied to the sapce H div m with m 0 . We define L t ( H 1 ) by u L t ( H 1 ) = sup 0 s t u ( s ) H 1 ( Ω ) .
The remainder of the paper is organized, as follows. In Section 2, we construct the growing solutions to the linearized Boussinesq-MHD system for the case a + < a . With these precise growth rate λ , we construct an approximation solution with higher order growing modes in Section 3. In Section 4, after obtaining the crucial estimates of the linearized system, we present nonlinear energy estimates of the original perturbed equations for the case a + < a . In Section 5, we will prove Theorem 1, which concludes the nonlinear instability and stability. Finally, in Section 6, we give the conlusions of this paper.

2. Variational Method for the Case a + < a

In this section, we prove that, if a + < a , then there exists a smooth linear growing mode of the forms (8) with the eigenvalue Λ > 0 .
We first linearize (4) around σ = 0 , u = b = 0 , p = 0 as
t σ + u 2 d d y θ 0 ( y ) div ( κ ( θ 0 ) σ ) = y ( σ d d y κ ( θ 0 ) ) , t u div ( μ ( θ 0 ) u ) + p = σ e 2 , t b ( γ ( θ 0 ) · b ) = 0 , div u = 0 , div b = 0 .
We want to find a dominate eigenvalue of the linearized equations (7), with its corresponding growing normal mode, which takes the form:
u = u ˜ ( x , y ) e λ t , σ = σ ˜ ( x , y ) e λ t , b = b ˜ ( x , y ) e λ t , p = p ˜ ( x , y ) e λ t ,
where ( σ ˜ ( x , y ) , u ˜ ( x , y ) , b ˜ ( x , y ) , p ˜ ( x , y ) ) H 1 × H div 1 × H div 1 × L 2 ( Ω ) , and satisfies the boundary condition (3) in the sense of the trace.
When a + < a , that is, d d y θ 0 ( y ) = 1 κ ( θ 0 ) , plugging (8) into (7) we can easily get the following equivalent system.
Lemma 1.
When a + < a . Assume (8), then (7) takes the form of
λ u ˜ + p ˜ · ( μ ( θ 0 ) u ˜ ) = σ ˜ e 2 , λ κ ( θ 0 ) σ ˜ u ˜ 2 κ ( θ 0 ) · ( κ ( θ 0 ) σ ˜ ) = κ ( θ 0 ) y ( σ ˜ d d y κ ( θ 0 ) ) , λ b ˜ ( γ ( θ 0 ) · b ˜ ) = 0 , · u ˜ = 0 , · b ˜ = 0 .
We define
I 1 ( σ ˜ , u ˜ , b ˜ ) = def Ω 2 σ ˜ u ˜ 2 + σ ˜ 2 κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) d x d y Ω μ ( θ 0 ) | u ˜ | 2 + κ 2 ( θ 0 ) | σ ˜ | 2 + γ ( θ 0 ) | · b ˜ | 2 d x d y ,
J 1 ( σ ˜ , u ˜ , b ˜ ) = def Ω ( | u ˜ | 2 + | b ˜ | 2 + κ ( θ 0 ) | σ ˜ | 2 ) d x d y .
It is easy to check that I 1 ( σ ˜ , u ˜ , b ˜ ) and J 1 ( σ ˜ , u ˜ , b ˜ ) are well define on the space H 1 × H div 1 × H div 1 .
Define the admissible set
A = def { ( σ ˜ , u ˜ , b ˜ ) H 1 × H div 1 × H div 1 : J 1 ( σ ˜ , u ˜ , b ˜ ) = 1 with u ˜ | Ω = 0 , σ ˜ | Ω = 0 , b ˜ · n | Ω = 0 } .
We know that I 1 ( σ ˜ , u ˜ , b ˜ ) has a upper bound on the set A . We are now in a position to prove that there exists a growing mode of (8) with the eigenvalue Λ > 0 .
Lemma 2.
Assume that the equilibrium temperature profile θ ¯ = θ 0 ( y ) satisfies d d y θ 0 ( y ) = 1 κ ( θ 0 ) , Λ = def sup ( σ ˜ , u ˜ , b ˜ ) A I 1 ( σ ˜ , u ˜ , b ˜ ) , then it holds that
(a) I 1 ( σ ˜ , u ˜ , b ˜ ) achieves its supremum on the admissible set A ,
(b) Let ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) A be a maximizer, then there exists a p ˜ 0 , such that ( σ ˜ 0 , u ˜ 0 , b ˜ 0 , p ˜ 0 , Λ ) solves the Sturm-Liouville problem
Λ u ˜ 0 + p ˜ 0 · ( μ ( θ 0 ) u ˜ 0 ) = σ ˜ 0 e 2 , Λ κ ( θ 0 ) σ ˜ 0 u ˜ 02 κ ( θ 0 ) · ( κ ( θ 0 ) σ ˜ 0 ) = κ ( θ 0 ) y ( σ ˜ 0 d d y κ ( θ 0 ) ) , Λ b ˜ 0 ( γ ( θ 0 ) · b ˜ 0 ) = 0 , · u ˜ 0 = 0 , · b ˜ 0 = 0 ,
with the boundary condition
( × b ˜ 0 ) × n | Ω = 0 .
Moreover, we have ( σ ˜ 0 , u ˜ 0 , b ˜ 0 , p ˜ 0 ) H 1 × H d i v 2 × H d i v 2 × H 1 and Λ > 0 .
Proof. 
(a) We first choose a maximizing sequence ( σ ˜ n , u ˜ n , b ˜ n ) A of the variational problem
max ( σ ˜ , u ˜ , b ˜ ) A I 1 ( σ ˜ , u ˜ , b ˜ )
such that
J 1 ( σ ˜ n , u ˜ n , b ˜ n ) = 1 and I 1 ( σ ˜ n , u ˜ n , b ˜ n ) Λ as n + ,
which implies that { I 1 ( σ ˜ n , u ˜ n , b ˜ n ) } n Z is bounded. It follows from this and Hölder’s inequality that
Ω μ ( θ 0 ) | u ˜ n | 2 + κ 2 ( θ 0 ) | σ ˜ n | 2 + γ ( θ 0 ) | · b ˜ n | 2 d x d y = Ω 2 σ ˜ n u ˜ n 2 + σ ˜ n 2 κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) d x d y I 1 ( σ ˜ n , u ˜ n , b ˜ n ) C J 1 ( σ ˜ n , u ˜ n , b ˜ n ) I 1 ( σ ˜ n , u ˜ n , b ˜ n ) C .
Hence, { ( σ ˜ n , u ˜ n , b ˜ n ) } n N is uniformly bounded in H 1 × H d i v 1 × H d i v 1 , which implies that there exists function ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) A and subsequence of { ( σ ˜ n , u ˜ n , b ˜ n ) } n N (we still write { ( σ ˜ n , u ˜ n , b ˜ n ) } n N for notational simplicity), such that ( σ ˜ n , u ˜ n , b ˜ n ) ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) weakly in H 1 × H d i v 1 × H d i v 1 and strongly in L l o c 2 × L l o c , d i v 2 × L l o c , d i v 2 .
Therefore, one gets that, for n +
1 = J 1 ( σ ˜ n , u ˜ n , b ˜ n ) = Ω ( | u ˜ n | 2 + | b ˜ n | 2 + κ ( θ 0 ) | σ ˜ n | 2 ) d x d y Ω ( | u ˜ 0 | 2 + | b ˜ 0 | 2 + κ ( θ 0 ) | σ ˜ 0 | 2 ) d x d y = J 1 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) ,
which implies that
J 1 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) = 1 .
On the other hand, thanks to the lower semi-continuity, one can get
sup ( σ ˜ , u ˜ , b ˜ ) A I 1 ( σ ˜ , u ˜ , b ˜ ) = lim sup n + I 1 ( σ ˜ n , u ˜ n , b ˜ n ) = lim n + Ω 2 σ ˜ n u ˜ n 2 + σ ˜ n 2 κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) d x d y lim inf n + Ω μ ( θ 0 ) | u ˜ n | 2 + κ 2 ( θ 0 ) | σ ˜ n | 2 + γ ( θ 0 ) | · b ˜ n | 2 d x d y I 1 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) sup ( σ ˜ , u ˜ , b ˜ ) A I 1 ( σ ˜ , u ˜ , b ˜ ) ,
which, along with (11), implies that I 1 ( σ ˜ , u ˜ , b ˜ ) achieves its supremum on the admissible set A , and
Λ = sup ( σ ˜ , u ˜ , b ˜ ) A I 1 ( σ ˜ , u ˜ , b ˜ ) = I 1 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) .
(b) It remains to verify that the maximizer ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) obtained above solves the problem (9) and the boundary condition (10). In fact, for τ R , β R and any ( σ , u , b ) H 1 × H d i v 1 × H d i v 1 with boundary conditions σ | Ω = 0 , u | Ω = 0 and n · b | Ω = 0 , we define that
j ( τ , β ) J 1 ( σ ˜ 0 + τ σ + β σ ˜ 0 , u ˜ 0 + τ u + β u ˜ 0 , b ˜ 0 + τ b + β b ˜ 0 ) 1 .
Because β j ( τ , β ) | ( 0 , 0 ) = 2 0 , by the implicit function existence theorem, we get that there exists a unique function β = β ( τ ) , defined on { τ R : | τ | h } with some positive constant h, such that j ( τ , β ( τ ) ) = 0 , 0 = β ( 0 ) . Therefore,
J 1 ( σ ˜ 0 + τ σ + β ( τ ) σ ˜ 0 , u ˜ 0 + τ u + β ( τ ) u ˜ 0 , b ˜ 0 + τ b + β ( τ ) b ˜ 0 ) 1 = 0 , | τ | h ,
and
β ( 0 ) = τ j ( τ , β ) | ( 0 , 0 ) β j ( τ , β ) | ( 0 , 0 ) = Ω ( u ˜ 0 · u + b ˜ 0 · b + κ ( θ 0 ) σ ˜ 0 σ ) d x d y .
Define that i ( τ ) I 1 ( σ ˜ 0 + τ σ + β ( τ ) σ ˜ 0 , u ˜ 0 + τ u + β ( τ ) u ˜ 0 , b ˜ 0 + τ b + β ( τ ) b ˜ 0 ) . Then i ( 0 ) = I 1 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) , and i ( τ ) i ( 0 ) for any h τ h , which implies that
0 = i ( 0 ) = 2 β ( 0 ) Ω [ 2 σ ˜ 0 u ˜ 02 + σ ˜ 0 2 κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) μ ( θ 0 ) | u ˜ 0 | 2 κ 2 ( θ 0 ) | σ ˜ 0 | 2 γ ( θ 0 ) | · b ˜ 0 | 2 ] d x d y + 2 Ω [ u ˜ 02 σ + σ ˜ 0 u 2 + σ ˜ 0 σ κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) μ ( θ 0 ) u ˜ 0 · u κ 2 ( θ 0 ) σ ˜ 0 · σ · b γ ( θ 0 ) · b ˜ 0 ] d x d y .
Hence, it follows from (12) and (13) that
0 = Ω [ u ˜ 02 σ + σ ˜ 0 u 2 + σ ˜ 0 σ κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) μ ( θ 0 ) u ˜ 0 · u κ 2 ( θ 0 ) σ ˜ 0 · σ · b γ ( θ 0 ) · b ˜ 0 ] d x d y Λ Ω ( u ˜ 0 · u + b ˜ 0 · b + κ ( θ 0 ) σ ˜ 0 σ ) d x d y ,
which implies that
0 = Ω Λ u ˜ 0 + σ ˜ 0 e 2 + · ( μ ( θ 0 ) u ˜ 0 ) · u d x d y + Ω Λ b ˜ 0 + ( γ ( θ 0 ) · b ˜ 0 ) · b d x d y + Ω γ ( θ 0 ) ( × b ˜ 0 ) × n · b d x d y + Ω [ Λ κ ( θ 0 ) σ ˜ 0 + u ˜ 02 + σ ˜ 0 κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) + · ( κ 2 ( θ 0 ) σ ˜ 0 ) ] σ d x d y = 0
for all ( σ , u , b ) H 1 × H d i v 1 × H d i v 1 . Therefore, there exists a p ˜ 0 such that ( σ ˜ 0 , u ˜ 0 , b ˜ 0 , p ˜ 0 , Λ ) satisfies the Sturm–Liouville problem (9) and the boundary condition (10) holds in the weak sense. By a standard regularity argument, one can show that ( σ ˜ 0 , u ˜ 0 , b ˜ 0 , p ˜ 0 ) H 1 × H d i v 2 × H d i v 2 × L 2 and Λ > 0 , which ends the proof. □
Remark 3.
From Lemma 2, we know that the Sturm–Liouville problem (9) at least has a solution ( σ ˜ 0 , u ˜ 0 , b ˜ 0 , p ˜ 0 , Λ ) .

3. The Exponential Growth Rate Λ

The goal of this section is to prove that the eigenvalue Λ in Section 2 is the sharp exponential growth rate for the linearized BMHD Equation (7). The results are as follows.
Lemma 3.
Let m N , and assume that ( σ 0 , u 0 , b 0 ) H m ( Ω ) × H d i v m ( Ω ) × H d i v m ( Ω ) and assume the boundary conditions for | α | m 1
α σ | Ω = 0 , α u | Ω = 0 , α b · n | Ω = 0 , ( × α b ) × n | Ω = 0 .
Subsequently, there exists a global unique solution ( σ , u , b ) , satisfying
( σ , u , b ) C ( R + ; H m ( Ω ) ) × C ( R + ; H d i v m ( Ω ) ) × C ( R + ; H d i v m ( Ω ) )
to the linearized BMHD system (7). Moreover, for any m 1 N with m 1 m , and t > 0 , it holds that
j = 0 m 1 ( κ j σ , j u , j b ) ( t ) L 2 2 + 0 t ( κ j + 1 σ , μ j + 1 u , γ j · b ) ( τ ) L 2 2 d τ C j = 0 m 1 ( κ j σ 0 , j u 0 , j b 0 ) L 2 2 + C e 2 Λ t ( κ σ 0 , u 0 , b 0 ) L 2 2 ,
j = 0 m 2 ( t j u , j + 1 p ) ( t ) L 2 2 + 0 t j + 1 t u ( τ ) L 2 2 d τ C j = 0 m ( κ j σ 0 , j u 0 , j b 0 ) L 2 2 + C e 2 Λ t ( κ σ 0 , u 0 , b 0 ) L 2 2 .
Proof. 
Both the existence and uniqueness of a solution to (7) essentially follow from some a priori estimates. We now establish the estimates.
For the L 2 estimate, multiplying the first equation of (7) by κ ( θ 0 ) σ , and then integrating the result equation with respect to ( x , y ) Ω , one obtains
1 2 d d t Ω κ ( θ 0 ) | σ | 2 d x d y Ω u 2 σ d x d y = Ω κ ( θ 0 ) div ( κ ( θ 0 ) σ ) σ d x d y + Ω κ ( θ 0 ) y σ d d y κ ( θ 0 ) σ d x d y .
Thanks to integration by parts again, one has
Ω κ ( θ 0 ) σ · ( κ ( θ 0 ) σ ) d x d y = Ω κ 2 ( θ 0 ) | σ | 2 d x d y + 1 4 Ω σ 2 d 2 d y 2 ( κ 2 ( θ 0 ) ) d x d y ,
Ω κ ( θ 0 ) σ y σ d d y κ ( θ 0 ) d x d y = Ω σ 2 d d y κ ( θ 0 ) 2 d x d y + 1 4 Ω σ 2 d 2 d y 2 ( κ 2 ( θ 0 ) ) d x d y ,
which implies that
1 2 d d t Ω κ ( θ 0 ) | σ | 2 d x d y + Ω κ 2 ( θ 0 ) | σ | 2 d x d y = Ω u 2 σ + σ 2 κ ( θ 0 ) d 2 d y 2 κ ( θ 0 ) d x d y .
Multiplying the second and third equation in (7) with u and b, respectively, and using the fact that
Ω ( γ ( θ 0 ) · b ) · b d x d y = Ω × ( γ ( θ ) × b ) · b d x d y = Ω γ ( θ ) ( × b ) × n · b d x d y + Ω γ ( θ ) | × b | 2 d x = Ω γ ( θ ) | × b | 2 d x d y ,
integrating by parts, we have
1 2 d d t Ω ( | u | 2 + | b | 2 ) d x d y + Ω ( μ ( θ 0 ) | u | 2 + γ ( θ 0 ) | · b | 2 ) d x d y = Ω u 2 σ d x d y .
This, together with (16), implies
1 2 d d t Ω ( | ( κ ( θ 0 ) σ , u , b ) | 2 ) d x d y + Ω [ | ( κ ( θ 0 ) σ , μ ( θ 0 ) u , γ ( θ 0 ) · b ) | 2 ] d x d y = 2 Ω u 2 σ d x d y + Ω σ 2 κ ( θ 0 ) d 2 d y 2 κ ( θ 0 ) d x d y .
From the definition of Λ in Lemma 2, we get from (17) that
1 2 d d t Ω ( κ ( θ 0 ) | σ | 2 + | u | 2 + | b | 2 ) d x d y Λ Ω ( κ ( θ 0 ) | σ | 2 + | u | 2 + | b | 2 ) d x d y ,
which implies that, for any t 0
Ω ( κ ( θ 0 ) | σ | 2 + | u | 2 + | b | 2 ) ( t ) d x d y e 2 Λ t Ω ( κ ( θ 0 ) | σ 0 | 2 + | u 0 | 2 + | b 0 | 2 ) d x d y .
Notice that the quantities κ ( θ 0 ) , μ ( θ 0 ) and γ ( θ 0 ) have positive lower bounds, and all of their derivatives are bounded in R . It follows from (17) that
Ω [ κ 2 ( θ 0 ) | σ | 2 + μ ( θ 0 ) | u | 2 + γ ( θ 0 ) | · b | 2 ] d x d y 1 2 d d t Ω ( κ ( θ 0 ) | σ | 2 + | u | 2 + | b | 2 ) d x d y + C Ω ( κ ( θ 0 ) | σ | 2 + | u | 2 + | b | 2 ) d x d y ,
which together with (18) implies that, for all t > 0
0 t || ( κ ( θ 0 ) σ , μ ( θ 0 ) u , γ ( θ 0 ) · b ) ( τ ) || L 2 2 d τ C e 2 Λ t || ( κ ( θ 0 ) σ 0 , u 0 , b 0 ) || L 2 2 .
Therefore, combining (19) with (18), we can show that, for all t 0
( κ ( θ 0 ) σ , u , b ) ( t ) L 2 2 + 0 t ( κ ( θ 0 ) σ , μ ( θ 0 ) u , γ ( θ 0 ) · b ) ( τ ) L 2 2 d τ C e 2 Λ t ( κ ( θ 0 ) σ 0 , u 0 , b 0 ) L 2 2 .
In order to get the H 1 estimate, applying the operator i (with i = 1 , 2 and 1 = x , 2 = y ) to the Equation (7), we obtain
t i σ i 1 κ ( θ 0 ) u 2 i div ( κ ( θ 0 ) σ ) = i y σ d d y κ ( θ 0 ) , t i u i div ( μ ( θ 0 ) u ) + i p = i σ e 2 , t i b ( γ ( θ 0 ) · i b ) = ( i γ ( θ 0 ) · b ) ,
which is equivalent to
t i σ 1 κ ( θ 0 ) i u 2 d d y ( 1 κ ( θ 0 ) ) u 2 δ 2 i div ( κ ( θ 0 ) i σ ) div d d y κ ( θ 0 ) σ δ 2 i = y i σ d d y κ ( θ 0 ) + y σ d 2 d y 2 κ ( θ 0 ) δ 2 i , t i u div ( μ ( θ 0 ) i u ) div d d y μ ( θ 0 ) u δ 2 i + i p = i σ e 2 , t i b ( γ ( θ 0 ) · i b ) = d d y γ ( θ 0 ) · b δ 2 i ,
where δ 2 i = 0 if i = 1 , and δ 2 i = 1 if i = 2 . Taking the L 2 inner product of the first equation in (22) with κ ( θ 0 ) i σ , and then using integration by parts, one gets
1 2 d d t Ω κ ( θ 0 ) | σ | 2 d x d y + Ω κ 2 ( θ 0 ) | 2 σ | 2 d x d y = Ω u 2 · σ d x d y Ω u 2 y σ d d y log κ ( θ 0 ) d x d y + Ω 3 4 d 2 d y 2 κ 2 ( θ 0 ) d d y κ ( θ 0 ) 2 | σ | 2 d x d y 1 2 Ω σ 2 d d y κ ( θ 0 ) d 3 d y 3 κ ( θ 0 ) d x d y + Ω ( y σ ) 2 κ ( θ 0 ) d 2 d y 2 κ ( θ 0 ) d d y κ ( θ 0 ) 2 d x d y .
Similarly, taking the L 2 inner product of the second and third equations in (21) with i u and i b , respectively, and then using integration by parts, we obtain
1 2 d d t Ω | ( u , b ) | 2 d x d y + Ω ( μ ( θ 0 ) | 2 u | 2 + i = 1 2 γ ( θ 0 ) | · i b | 2 ) d x d y = Ω u 2 · σ d x d y + 1 2 Ω | u | 2 d 2 d y 2 μ ( θ 0 ) d x d y + 1 2 Ω | · b | 2 d 2 d y 2 γ ( θ 0 ) d x d y ,
which, along with (23), gives
1 2 d d t Ω ( | ( κ σ , u , b ) | 2 ) d x d y + Ω | ( κ 2 σ , μ 2 u , γ ( · b ) | 2 d x d y C ( κ σ , μ u , γ · b ) L 2 2 + C ( κ ( θ 0 ) σ , u , b ) L 2 2 .
This, together with (20), implies that for all t > 0
( κ ( θ 0 ) σ , u , , b ) ( t ) L 2 2 + 0 t ( κ 2 σ , μ 2 u , γ ( · b ) ( τ ) L 2 2 d τ ( κ ( θ 0 ) σ 0 , u 0 , b 0 ) L 2 2 + C e 2 Λ t ( κ ( θ 0 ) σ 0 , u 0 , b 0 ) L 2 2 .
By an induction argument, we can get (14) and (15), which completes the proof. □

4. Nonlinear Energy Estimates for the Case a + < a

In this section, we prove the nonlinear estimates for the nonlinear perturbation (4) for the case a + < a .
Lemma 4.
Assume that σ 0 H 2 ( Ω ) , ( u 0 , b 0 ) H d i v 2 ( Ω ) × H d i v 2 ( Ω ) and assume the boundary conditions
σ | Ω = 0 , u | Ω = 0 , b · n | Ω = 0 , ( × b ) × n | Ω = 0 .
Subsequently, there exists a unique global solution ( σ , u , b ) satisfying
( σ , u , b ) C l o c ( R + ; H 2 ( Ω ) ) × C l o c ( R + ; H d i v 2 ( Ω ) ) × C l o c ( R + ; H d i v 2 ( Ω ) )
to the perturbed BMHD (4) with initial data ( σ 0 , u 0 , b 0 ) and the corresponding boundary conditions. Moreover, there are two positive constants δ ¯ ( 0 , 1 ] and T > 0 , such that, for any t [ 0 , T ] and ( σ , u , b ) ( t ) H 2 δ ¯ , it holds that
( σ , u , b ) L t ( H 2 ) 2 + 0 t ( σ , u , b ) H 2 2 d τ C ( σ 0 , u 0 , b 0 ) H 2 2 + C 0 t ( σ , u ) L 2 2 d τ ,
where the constant C only depends on θ ¯ and Ω.
Proof. 
Similar to the proof of Lemma 3, we just need to present some necessary a priori estimates for sufficiently smooth solutions to (4).
Multiplying the three equations in (4) by σ , u, and b, respectively, and then integrating by parts, we obtain
1 2 d d t Ω | ( σ , u , b ) | 2 d x d y + Ω ( κ ( θ 0 + σ ) | σ | 2 + μ ( θ 0 + σ ) | u | 2 + γ ( θ 0 + σ ) | · b | 2 ) d x d y = Ω 1 + 1 κ ( θ 0 ) u 2 σ d x d y + Ω κ ( θ 0 + σ ) κ ( θ 0 ) κ ( θ 0 ) y σ d x d y ,
which implies
1 2 d d t ( σ , u , b ) L 2 2 + Ω ( κ ( θ 0 + σ ) | σ | 2 + μ ( θ 0 + σ ) | u | 2 + γ ( θ 0 + σ ) | · b | 2 ) d x d y σ L 2 2 + u L 2 2 + κ ( θ 0 + σ ) κ ( θ 0 ) L 2 y σ L 2 .
Therefore, applying Young’s inequality, we can show
d d t Ω ( | σ | 2 + | u | 2 + | b | 2 ) d x d y + Ω [ κ ( θ 0 + σ ) | σ | 2 + μ ( θ 0 + σ ) | u | 2 + γ ( θ 0 + σ ) | · b | 2 ] d x d y σ L 2 2 + u L 2 2 + κ L 2 σ L 2 2 σ L 2 2 + u L 2 2 .
Integrating the above inequality gives that for all t < T
( σ , u , b ) L T ( L 2 ) 2 + c 0 ( σ , u , · b ) L T 2 ( L 2 ) 2 ( σ 0 , u 0 , b 0 ) L 2 2 + C 0 t ( σ L 2 2 + u L 2 2 ) d τ .
In order to get the H 1 estimate, applying the operator i (with i = 1 , 2 and 1 = x , 2 = y ) to the Equation (4), we have
t i σ + u · i σ div ( κ ( θ 0 + σ ) i σ ) div ( σ i κ ( θ 0 + σ ) ) = i 1 κ ( θ 0 ) u 2 + 1 κ ( θ 0 ) i u 2 y i κ ( θ 0 + σ ) κ ( θ 0 ) i u · σ , t i u + u · i u div ( μ ( θ 0 + σ ) i u ) + i p = i σ e 2 i u · u + div ( u i μ ( θ 0 + σ ) ) + b · i b + i b · b , t i b + u · i b ( γ ( θ 0 + σ ) i · b ) = b · i u + i b · u i u · b + ( i γ ( θ 0 + σ ) · b ) .
Multiplying the three equations in (26) by i σ , i u and i b , respectively, and then using integration by parts, we have
1 2 d d t Ω ( | σ | 2 + | u | 2 + | b | 2 ) d x d y + Ω κ ( θ 0 + σ ) | 2 σ | 2 + μ ( θ 0 + σ ) | 2 u | 2 + γ ( θ 0 + σ ) | · b | 2 d x d y = F
with
F = def Ω i = 1 2 [ d d y 1 κ ( θ 0 ) u 2 y σ + 1 κ ( θ 0 ) i u 2 i σ + i σ i u 2 + κ ( θ 0 ) y [ κ ( θ 0 + σ ) κ ( θ 0 ) ] y κ ( θ 0 ) [ κ ( θ 0 + σ ) κ ( θ 0 ) ] κ 2 ( θ 0 ) i 2 σ i u · σ i σ + ( i b · b i u · u ) · i u + ( i b · u i u · b ) · i b + 1 2 i 2 μ ( θ 0 + σ ) | u | 2 + 1 2 i 2 γ ( θ 0 + σ ) | · b | 2 + 1 2 i 2 κ ( θ 0 + σ ) | σ | 2 ] d x d y = : j = 1 4 F j .
Thanks to the boundness of κ ( θ 0 ) and its derivatives, it follows from Holder’s inequality that
| F 1 | u 2 L 2 y σ L 2 + i u 2 L 2 i σ L 2 ( u 2 L 2 + u L 2 ) σ L 2
and
| F 2 | κ ( θ 0 + σ ) κ ( θ 0 ) H 1 i 2 σ L 2 ( κ L + κ L ) σ H 1 2 σ L 2 ( σ L 2 + σ L 2 ) 2 σ L 2 .
Similarly, by Poincare inequality, we can estimate F 3 and F 4 , as follows
| F 3 | ( σ , u , · b ) L 2 2 + ( σ , u , · b ) L 4 4 ( σ , u , · b ) L 2 2 + ( σ , u , b ) L 2 2 ) ( 2 σ , 2 u , · b ) L 2 2 ,
| F 4 | ( σ , u , · b ) L 4 4 + 2 σ L 2 ( σ , u , · b ) L 4 2 ( η + C η ( σ , u , b ) L 2 2 ) ( 2 σ , 2 u , · b ) L 2 2 ,
which together with (27) implies that
d d t Ω ( | ( σ , u , b ) | 2 ) d x d y + 2 Ω κ ( θ 0 + σ ) | 2 σ | 2 + μ ( θ 0 + σ ) | 2 u | 2 + γ ( θ 0 + σ ) | · b | 2 d x d y ( σ , u ) L 2 2 + ( σ , u , · b ) L 2 2 + ( η + C η ( σ , u , b ) H 1 2 ) ( 2 σ , 2 u , · b ) L 2 2 .
Therefore, it follows from (28) that, for some positive constant c 0 and any t > 0 ,
( σ , u , b ) ( t ) L 2 2 + c 0 0 t ( 2 σ , 2 u , · b ) L 2 2 d τ ( σ , u , b ) ( 0 ) L 2 2 + C 0 t ( σ , u ) L 2 2 d τ + C 0 t ( σ , u , · b ) L 2 2 d τ + C 0 t ( η + C η ( σ , u , b ) H 1 2 ) ( 2 σ , 2 u , · b ) L 2 2 d τ ,
which, together with (25), leads to
( σ , u , b ) L t ( H 1 ) 2 + c 0 0 t ( σ , u , · b ) H 1 2 d τ C ( σ 0 , u 0 , b 0 ) H 1 2 + C 0 t ( σ , u ) L 2 2 d τ + C 0 t ( η + C η ( σ , u , b ) H 1 2 ) ( 2 σ , 2 u , · b ) L 2 2 d τ .
Then we have
( σ , u , b ) L t ( H 1 ) 2 + 0 t ( σ , u , b ) H 1 2 d τ C ( σ 0 , u 0 , b 0 ) H 1 2 + C 0 t ( σ , u ) L 2 2 d τ ,
if η > 0 is sufficiently small and ( σ , u , b ) ( t ) H 1 δ ¯ with δ ¯ small enough and t [ 0 , T ] for some positive time T.
Similarly, one can obtain that
( σ , u , b ) L t ( H 2 ) 2 + c 0 0 t ( σ , u , · b ) H 2 2 d τ C ( σ 0 , u 0 , b 0 ) H 2 2 + C 0 t ( σ , u ) L 2 2 d τ + C 0 t ( η + C η ( σ , u , b ) H 2 2 ) ( 3 σ , 3 u , 2 · b ) L 2 2 d τ ,
which implies (24). □

5. Proof of Theorem 1

The goal of this section is to prove Theorem 1.
Proof. 
(i) First, from Section 3, one can construct a solution of the form
( σ 1 , u 1 , b 1 ) = def e Λ t ( σ ˜ 0 , u ˜ 0 , b ˜ 0 )
to the system (7) with the initial data ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) H 2 ( Ω ) × H d i v 2 ( Ω ) × H d i v 2 ( Ω ) and the corresponding boundary conditions. Moreover, these initial data can be assumed to satisfy
( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) H 2 = 1
by a standard normalization argument.
For any δ ( 0 , δ 0 ) , take ( σ 0 δ , u 0 δ , b 0 δ ) = δ ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) , and ( σ δ , u δ , b δ ) is the solution to (4) with initial data ( σ 0 δ , u 0 δ , b 0 δ ) and ε 0 > 0 sufficiently small (to be determined later), and define T δ > 0 , such that
δ e Λ T δ = def 2 ε 0 ,
T * = def sup { t > 0 : ( σ δ , u δ , b δ ) ( t ) H 2 δ 0 }
and
T * * = def sup { t > 0 : ( σ δ , u δ , b δ ) ( t ) L 2 2 δ ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 e Λ t } .
Subsequently, for all t min ( T δ , T * , T * * ) , using the estimate (24) and the definitions of T * and T * * , we obtain
( σ δ , u δ , b δ ) ( t ) H 2 2 + 0 t ( σ δ , u δ , · b δ ) H 2 2 d τ C δ 2 + C 0 t ( σ δ , u δ ) L 2 2 d τ C δ 2 + 2 C 1 2 δ 2 C e 2 Λ t / Λ C 2 δ 2 e 2 Λ t
for some constant C 2 > 0 independent of δ .
Let ( σ d , u d , b d ) = def ( σ δ , u δ , b δ ) δ ( σ 1 , u 1 , b 1 ) . Noting that ( σ δ a , u δ a , b δ a ) = def δ ( σ 1 , u 1 , b 1 ) is also a solution to (7) with the initial data ( σ 0 δ , u 0 δ , b 0 δ ) , so ( σ d , u d , b d ) solves the following problem:
t σ d 1 κ ( θ 0 ) u 2 d div ( κ ( θ 0 ) σ d ) y σ d d d y κ ( θ 0 ) = F , t u d div ( μ ( θ 0 ) u d ) + p d σ d e 2 = G , t b d ( γ ( θ 0 ) · b d ) = H , div u d = 0 , div b d = 0 , ( σ d , u d , b d ) | t = 0 = 0 , ( σ d , u d ) | Ω = 0 , b d · n | Ω = 0 , ( × b d ) × n | Ω = 0 ,
with
F = u δ · σ δ + div ( [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ ) y κ ( θ 0 + σ δ ) σ δ κ ( θ 0 ) κ ( θ 0 ) , G = b δ · b δ u δ · u δ + div ( [ μ ( θ 0 + σ δ ) μ ( θ 0 ) ] u δ ) , H = b δ · u δ u δ · b δ + ( [ γ ( θ 0 + σ δ ) γ ( θ 0 ) ] · b δ ) ,
namely,
κ ( θ 0 ) t σ d u 2 d κ ( θ 0 ) div ( κ ( θ 0 ) σ d ) κ ( θ 0 ) y ( σ d d d y κ ( θ 0 ) ) = κ ( θ 0 ) F , t u d div ( μ ( θ 0 ) u d ) + p d σ d e 2 = G , t b d ( γ ( θ 0 ) · b d ) = H , div u d = 0 , div b d = 0 , ( σ d , u d , b d ) | t = 0 = 0 , ( σ d , u d ) | Ω = 0 , b d · n | Ω = 0 , ( × b d ) × n | Ω = 0 .
Similar to the proof of (17), one can get from (32) that
1 2 d d t Ω ( κ ( θ 0 ) | σ d | 2 + | u d | 2 + | b d | 2 ) d x d y + Ω [ κ 2 ( θ 0 ) | σ d | 2 + μ ( θ 0 ) | u d | 2 + γ ( θ 0 ) | · b d | 2 ] d x d y 2 Ω u 2 d σ d d x d y = Ω ( σ d ) 2 κ ( θ 0 ) d 2 d y 2 κ ( θ 0 ) d x d y + Ω ( κ ( θ 0 ) F σ d + G · u d + H · b d ) d x d y .
Hence, by the definition of Λ , one has
d d t Ω ( κ ( θ 0 ) | σ d | 2 + | u d | 2 + | b d | 2 ) d x d y 2 Λ Ω ( κ ( θ 0 ) | σ d | 2 + | u d | 2 + | b d | 2 ) d x d y + 2 Ω ( κ ( θ 0 ) F σ d + G · u d + H · b d ) d x d y .
For the remainder terms on the right-hand-side of (33), one first can deduce that
| Ω κ ( θ 0 ) σ d u δ · σ δ d x d y | C σ d L 4 u δ L 4 σ δ L 2 C σ d L 2 1 2 u δ L 2 1 2 σ d L 2 1 2 u δ L 2 1 2 σ δ L 2 C σ d H 1 u δ H 1 σ δ L 2 C ( σ δ H 1 + δ σ 1 H 1 ) u δ H 1 σ δ L 2 .
Similarly, it holds that
| Ω u d · ( b δ · b δ u δ · u δ ) d x d y | ( u δ H 1 + δ u 1 H 1 ) ( u δ , b δ ) H 1 ( u δ , b δ ) L 2 ,
and
| Ω b d · ( b δ · u δ u δ · b δ ) d x d y | ( b δ H 1 + δ b 1 H 1 ) ( u δ , b δ ) H 1 ( u δ , b δ ) L 2 .
By integration by parts, one can control the term | Ω σ d κ ( θ 0 ) div ( [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ ) d x d y | by | Ω [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ · σ d κ ( θ 0 ) + [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] y σ δ σ d d d y κ ( θ 0 ) d x d y | , which implies that
| Ω σ d κ ( θ 0 ) div ( [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ ) d x d y | κ ( θ 0 + σ δ ) κ ( θ 0 ) L 4 ( σ δ L 4 σ d L 2 + y σ δ L 2 σ d L 4 ) σ δ H 1 σ δ H 1 ( σ δ L 2 + δ σ 1 L 2 ) + σ δ H 1 σ δ L 2 ( σ δ H 1 + δ σ 1 H 1 ) σ δ H 1 σ δ H 1 ( σ δ H 1 + δ σ 1 H 1 ) .
Similarly, one can show that
Ω | div ( [ μ ( θ 0 + σ δ ) μ ( θ 0 ) ] u δ ] ) · u d | + | ( [ γ ( θ 0 + σ δ ) γ ( θ 0 ) ] · b δ ] ) · b d | d x d y σ δ H 1 ( u δ , b δ ) H 1 ( ( u δ , b δ ) L 2 + δ ( u 1 , b 1 ) L 2 ) .
Noticing that
| Ω σ d κ ( θ 0 ) y κ ( θ 0 + σ δ ) σ δ κ ( θ 0 ) κ ( θ 0 ) d x d y | | Ω κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) y σ d d x d y | + | Ω σ d d d y κ ( θ 0 ) κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) κ ( θ 0 ) d x d y | ,
one has
| Ω σ d κ ( θ 0 ) y κ ( θ 0 + σ δ ) σ δ κ ( θ 0 ) κ ( θ 0 ) d x d y | κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) L 2 ( σ d L 2 + σ d L 2 ) κ L σ δ L 4 2 σ d H 1 σ δ L 2 σ δ L 2 ( σ δ H 1 + δ σ 1 H 1 ) .
Substituting (34)–(38) into (33), yields
d d t Ω ( κ ( θ 0 ) | σ d | 2 + | u d | 2 + | b d | 2 ) d x d y 2 Λ Ω ( κ ( θ 0 ) | σ d | 2 + | u d | 2 + | b d | 2 ) d x d y + C ( σ δ , u δ , b δ ) H 1 ( σ δ , u δ , b δ ) H 1 ( σ δ , u δ , b δ , δ σ 1 , δ u 1 , δ b 1 ) H 1 ,
which, along with the Gronwall’s inequality, gives rise to
( σ d , u d , b d ) L t ( L 2 ) 2 C 0 t e 2 Λ ( t τ ) ( σ δ , u δ , b δ ) H 1 ( σ δ , u δ , b δ ) H 1 ( σ δ , u δ , b δ , δ σ 1 , δ u 1 , δ b 1 ) H 1 d τ C e Λ t 0 t e 2 Λ ( t τ ) ( σ δ , u δ , b δ ) H 1 2 d τ 1 2 ( σ δ , u δ , b δ ) L t 2 ( H 1 ) × ( σ δ , u δ , b δ , δ σ 1 , δ u 1 , δ b 1 ) L t ( H 1 ) .
It follows from (31) and (39) that, for all t min ( T δ , T * , T * * ) , it holds that
( σ d , u d , b d ) L t ( L 2 ) 2 1 + 1 Λ C δ 3 e 3 Λ t
which yields that
( σ d , u d , b d ) L t ( L 2 ) C 3 δ 3 / 2 e 3 2 Λ t
for some positive constant C 3 independent of δ .
Now, we claim that
T δ = min ( T δ , T * , T * * )
if ε 0 is taken to be so small that
0 < ε 0 min δ 0 4 C 2 , ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 2 8 C 3 2 .
In fact, if T * = min ( T δ , T * , T * * ) < T δ , then (31) implies that
( σ δ , u δ , b δ ) ( T * ) H 2 C 2 δ e Λ T * < 2 C 2 ε 0 1 2 δ 0
which contradicts with the definition of T * in (29).
On the other hand, if T * * = min ( T δ , T * , T * * ) < T δ , then it follows from (31), that
( σ δ , u δ , b δ ) ( T * * ) L 2 ( σ δ a , u δ a , b δ a ) ( T * * ) L 2 + ( σ d , u d , b d ) ( T * * ) L 2 δ ( σ 1 , u 1 , b 1 ) ( T * * ) L 2 + C 3 δ 3 / 2 e 3 2 Λ T * * δ ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 e Λ T * * + C 3 δ 3 / 2 e 3 2 Λ T * * δ e Λ T * * ( ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 + C 3 2 ε 0 ) 3 2 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 δ e Λ T * * .
which contradicts with the definition of T * * in (30), and, thus, (41) holds. Therefore, thanks to the fact that
( σ δ a , u δ a , b δ a ) ( T δ ) L 2 = δ ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 e Λ T δ = 2 ε 0 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 ,
we get from (40) and (42) that
( σ δ , u δ , b δ ) ( T δ ) L 2 ( σ δ a , u δ a , b δ a ) ( T δ ) L 2 ( σ d , u d , b d ) ( T δ ) L 2 2 ε 0 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 C 3 δ 3 / 2 e 3 2 Λ t 2 ε 0 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 2 2 C 3 ε 0 3 / 2 ε 0 ( σ ˜ 0 , u ˜ 0 , b ˜ 0 ) L 2 ,
which completes the proof of the case (i).
(ii) Now, we consider the case a + > a and d 2 d y 2 κ ( θ 0 ( y ) ) 0 or 0 < d 2 d y 2 κ ( θ 0 ( y ) ) β 0 , with β 0 > 0 small enough constant. We will prove that the equilibrium state ( θ 0 ( y ) , 0 , 0 ) is nonlinearly asymptotically stable.
First, it follows from (4) that
κ ( θ 0 ) t σ δ + κ ( θ 0 ) u δ · σ δ κ ( θ 0 ) div ( κ ( θ 0 ) σ δ ) = κ ( θ 0 ) y σ δ d d y κ ( θ 0 ) u 2 δ + κ ( θ 0 ) F δ , t u δ + u δ · u δ div ( μ ( θ 0 ) u δ ) + p δ = σ δ e 2 + b δ · b δ + G δ , t b δ + u δ · b δ ( γ ( θ 0 ) · b δ ) = b δ · u δ + H δ , div u δ = 0 , div b δ = 0
with
F δ = div ( [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ ) + y κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) κ ( θ 0 ) , G δ = div ( [ μ ( θ 0 + σ δ ) μ ( θ 0 ) ] u δ ) , H δ = ( [ γ ( θ 0 + σ δ ) γ ( θ 0 ) ] · b δ ) .
Multiplying the three equations in (43) by σ δ , u δ , and b δ , respectively, then using integration by parts, we can get that
1 2 d d t Ω ( κ ( θ 0 ) | σ δ | 2 + | u δ | 2 + | b δ | 2 ) d x d y + Ω [ κ 2 ( θ 0 ) | σ δ | 2 + μ ( θ 0 ) | u δ | 2 + γ ( θ 0 ) | · b δ | 2 ] d x d y = Ω ( σ δ ) 2 κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) d x d y + Ω κ ( θ 0 ) F δ σ δ d x d y + Ω G δ · u δ d x d y + Ω H δ · b δ d x d y Ω κ ( θ 0 ) σ δ u δ · σ δ d x d y Ω [ u δ · ( u δ · u δ ) u δ · ( b δ · b δ ) + b δ · ( u δ · b δ ) b δ · ( b δ · u δ ) ] d x d y .
Notice that
| Ω κ ( θ 0 ) σ δ u δ · σ δ d x d y | C σ δ L 4 u δ L 4 σ δ L 2 C σ δ L 2 1 2 u δ L 2 1 2 σ δ L 2 1 2 u δ L 2 1 2 σ δ L 2 ,
we get
| Ω κ ( θ 0 ) σ δ u δ · σ δ d x d y | ( σ δ , u δ ) L 2 ( σ δ , u δ ) L 2 2 .
Thanks to the fact that div u δ = div b δ = 0 , we have
Ω [ u δ · ( u δ · u δ ) u δ · ( b δ · b δ ) + b δ · ( u δ · b δ ) b δ · ( b δ · u δ ) ] d x d y = 0 .
By using integration by parts, one can control the term
| Ω σ δ κ ( θ 0 ) div ( [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ ) d x d y |
by
| Ω [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ · σ δ κ ( θ 0 ) + [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] y σ δ σ δ d d y κ ( θ 0 ) d x d y | ,
which implies that
| Ω σ δ κ ( θ 0 ) div ( [ κ ( θ 0 + σ δ ) κ ( θ 0 ) ] σ δ ) d x d y | κ ( θ 0 + σ δ ) κ ( θ 0 ) L 4 ( σ δ L 4 σ δ L 2 + y σ δ L 2 σ δ L 4 ) σ δ L 4 σ δ L 4 σ δ L 2 + y σ δ L 2 σ δ L 4 2 C η σ δ H 1 σ δ L 2 2 + η 2 σ δ L 2 2 + C η σ δ L 2 2 σ δ L 2 2 .
Similarly, it follows from integration by parts that
| Ω div ( [ μ ( θ 0 + σ δ ) μ ( θ 0 ) ] u δ ] ) · u δ d x d y | μ ( θ 0 + σ δ ) μ ( θ 0 ) L 2 u δ L 4 2 σ δ L 2 u δ L 2 2 u δ L 2 η 2 u δ L 2 2 + C η σ δ L 2 2 u δ L 2 2 ,
and
| Ω ( [ γ ( θ 0 + σ δ ) γ ( θ 0 ) ] · b δ ] ) · b δ d x d y | γ ( θ 0 + σ δ ) γ ( θ 0 ) L 2 · b δ L 4 2 σ δ L 2 · b δ L 2 · b δ L 2 η · b δ L 2 2 + C η σ δ L 2 2 · b δ L 2 2 ,
Notice that
Ω σ δ κ ( θ 0 ) y κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) κ ( θ 0 ) d x d y = Ω [ κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) ] y σ δ d x d y Ω κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) κ ( θ 0 ) σ δ d d y κ ( θ 0 ) d x d y .
Therefore, we have
| Ω σ δ κ ( θ 0 ) y κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) κ ( θ 0 ) d x d y | κ ( θ 0 + σ δ ) κ ( θ 0 ) σ δ κ ( θ 0 ) L 2 ( σ δ L 2 + σ δ L 2 ) σ δ L 4 2 ( σ δ L 2 + σ δ L 2 ) σ δ L 2 σ δ L 2 2 + σ δ L 2 2 σ δ L 2 σ δ L 2 2 σ δ L 2 2 .
On the other hand, by Poincare inequality for a strip, it follows from physical condition (2) and the assumption in (ii) of Theorem 1 that
| Ω ( σ δ ) 2 κ ( θ 0 ) d 2 d y 2 ( κ ( θ 0 ) ) d x d y | β 0 Ω κ 2 ( θ 0 ) | σ δ | 2 d x d y .
Therefore, plugging (45)–(51) into (44), for β 0 small enough, we can get
d d t ( κ ( θ 0 ) σ δ , u δ , b δ ) L 2 2 + c 0 ( σ δ , u δ , b δ ) L 2 2 ( u δ L 2 + σ δ L 2 2 + σ δ H 1 ) ( σ δ , u δ , b δ ) L 2 2 + η ( 2 u δ , 2 σ δ , 2 b δ ) L 2 2
for some positive constant c 0 .
In order to get the H 1 estimate, one can apply the operator i (with i = 1 , 2 and 1 = x , 2 = y ) to the equations (4) to get
t i σ δ + u δ · i σ δ + i u δ · σ δ div ( κ ( θ 0 ) i σ δ ) div ( i κ ( θ 0 ) σ δ ) = y i σ δ d d y κ ( θ 0 ) i 1 κ ( θ 0 ) u 2 δ + i F δ , t i u δ + u δ · i u δ + i u δ · u δ div ( μ ( θ 0 ) i u δ ) div ( i μ ( θ 0 ) u δ ) + i p δ = b δ · i b δ + i b δ · b δ + i σ δ e 2 + i G δ , t i b δ + u δ · i b δ + i u δ · b δ ( γ ( θ 0 ) i · b δ ) ( i γ ( θ 0 ) · b δ ) = b δ · i u δ + i b δ · u δ + i H δ .
Multiplying the three equation in (53) by i σ δ , i u δ , and i b δ respectively, then using integration by parts, we can obtain
1 2 d d t Ω | ( σ δ , u δ , b δ ) | 2 d x d y + Ω κ ( θ 0 ) | 2 σ δ | 2 + μ ( θ 0 ) | 2 u δ | 2 + γ ( θ 0 ) | · b δ | 2 d x d y = Ω d κ ( θ 0 ) d y σ δ · y σ δ + d μ ( θ 0 ) d y u δ · y u δ + d γ ( θ 0 ) d y ( · b δ ) ( · y b δ ) d x d y + i = 1 2 Ω i b δ · b δ · i u δ + i b δ · u δ · i b δ i u δ · b δ · i b δ d x d y i = 1 2 Ω y σ δ d d y κ ( θ 0 ) u 2 δ κ ( θ 0 ) + F δ i 2 σ δ + ( σ δ e 2 + G δ ) · i 2 u δ d x d y i = 1 2 Ω i u δ · u δ · i u δ d x d y i = 1 2 Ω ( i u δ · σ δ ) i σ δ d x d y .
Thanks to the boundedness of κ ( θ 0 ) , μ ( θ 0 ) , γ ( θ 0 ) and their derivatives, it follows from Hölder inequality and Young inequality that
| Ω d κ ( θ 0 ) d y σ δ · y σ δ + d μ ( θ 0 ) d y u δ · y u δ + d γ ( θ 0 ) d y ( · b δ ) · ( · y b δ ) d x d y | ( σ δ , u δ , b δ ) L 2 ( 2 σ δ , 2 u δ , 2 b δ ) L 2 η ( 2 σ δ , 2 u δ , 2 b δ ) L 2 2 + C η ( σ δ , u δ , b δ ) L 2 2 .
Similarly, we can prove
| i = 1 2 Ω i u δ · u δ · i u δ d x d y | u δ L 4 2 u δ L 2 u δ L 2 2 2 u δ L 2 C η u δ L 2 4 + η 2 u δ L 2 2 ,
| i = 1 2 Ω i u δ · σ δ · i σ δ d x d y | C η σ δ L 2 2 u δ L 2 2 + η 2 σ δ L 2 2 ,
| i = 1 2 Ω ( i b δ · b δ · i u δ + i b δ · u δ · i b δ i u δ · b δ · i b δ ) d x d y | C η b δ L 2 2 u δ L 2 2 + η 2 b δ L 2 2 .
On the other hand, direct estimates give that
| i = 1 2 Ω y σ δ d d y κ ( θ 0 ) u 2 δ κ ( θ 0 ) + F δ i 2 σ δ + ( σ δ e 2 + G δ ) · i 2 u δ + H δ · i 2 b δ d x d y | ( 2 σ δ , 2 u δ , 2 b δ ) L 2 ( F δ L 2 + G δ L 2 + H δ L 2 + ( σ δ , u δ ) L 2 + σ δ L 2 ) η ( 2 σ δ , 2 u δ , 2 b δ ) L 2 2 + C η ( F δ L 2 2 + G δ L 2 2 + H δ L 2 2 + ( σ δ , u δ ) L 2 2 ) ,
F δ L 2 + G δ L 2 + H δ L 2 σ δ L 4 ( σ δ , u δ , b δ ) L 4 + σ δ L ( 2 σ δ , 2 u δ , 2 b δ ) L 2 + σ δ L 4 2 + σ δ L 2 , ( ( σ δ , u δ , b δ ) L 2 + σ δ L 2 1 2 2 σ δ L 2 1 2 ) ( 2 σ δ , 2 u δ , 2 b δ ) L 2 + ( 1 + σ δ L 2 ) σ δ L 2 .
Therefore, substituting (55)–(60) to (54), we can show that, for some positive constant c 1 ,
d d t ( σ δ , u δ , b δ ) L 2 2 + c 1 ( 2 σ δ , 2 u δ , 2 b δ ) L 2 2 ( 1 + σ δ L 2 2 + u δ L 2 2 ) ( σ δ , u δ , b δ ) L 2 2 + ( ( σ δ , u δ , b δ ) L 2 2 + σ δ L 2 2 σ δ L 2 ) ( 2 σ δ , 2 u δ , 2 b δ ) L 2 2 .
Similarly, we can get for some positive constant c 2 ,
d d t ( 2 σ δ , 2 u δ , 2 b δ ) L 2 2 + c 2 ( 3 σ δ , 3 u δ , 3 b δ ) L 2 2 ( 1 + ( σ δ , u δ , b δ ) L 2 2 ) ( 2 σ δ , 2 u δ , 2 b δ ) L 2 2 + ( 2 σ δ , 2 u δ , 2 b δ ) L 2 2 ( 3 σ δ , 3 u δ , 3 b δ ) L 2 2 .
Hence, it follows from (52), (61), and (62) that for some positive constant c 3 ,
d d t ( σ δ , u δ , b δ ) H 2 2 + c 3 ( σ δ , u δ , b δ ) H 2 2 C 4 ( σ δ , u δ , b δ ) H 2 2 ( σ δ , u δ , b δ ) H 2 2 .
By a bootstrap argument, we can obtain that there is a positive constant δ 0 c 3 2 C 4 , such that, for any δ ( 0 , δ 0 ) , if ( σ 0 δ , u 0 δ , b 0 δ ) H 2 δ , then
( σ δ , u δ , b δ ) L t ( H 2 ) 2 + c 3 2 ( σ δ , u δ , b δ ) L t 2 ( H 2 ) 2 ( σ 0 δ , u 0 δ , b 0 δ ) H 2 2 δ 2 .
It follows from this and (63) that
d d t ( σ δ , u δ , b δ ) H 2 2 + c 3 2 ( σ δ , u δ , b δ ) H 2 2 0 ,
which, together with Poincare inequality, implies that
d d t ( σ δ , u δ , b δ ) H 2 2 + c 4 ( σ δ , u δ , b δ ) H 2 2 0
for some positive constant c 4 . Therefore, (64) implies that, for any t > 0
( σ δ , u δ , b δ ) ( t ) H 2 ( σ 0 δ , u 0 δ , b 0 δ ) H 2 e c 4 t ,
which gives (5). This finishes the proof. □

6. Conclusions

In this paper, we consider the 2D Boussinesq-MHD equations with the temperature-dependent fluid viscosity, thermal diffusivity and electrical conductivity in a channel. We get that if a + a , and d 2 d y 2 κ ( θ 0 ( y ) ) 0 or 0 < d 2 d y 2 κ ( θ 0 ( y ) ) β 0 , with β 0 > 0 small enough constant, and then the equilibrium state ( u ¯ = 0 , B ¯ = 0 , θ ¯ = θ 0 ( y ) ) is nonlinearly asymptotically stable, and, if a + < a , then the equilibrium state ( u ¯ = 0 , B ¯ = 0 , θ ¯ = θ 0 ( y ) ) is nonlinearly unstable. There is one open interesting problem. How about the equilibirum state ( u ¯ = ( y , 0 ) , B ¯ = ( y , 0 ) , θ ¯ = θ 0 ( y ) ) or the equilibirum state ( u ¯ = ( y , 0 ) , B ¯ = ( y , 0 ) , θ ¯ = 0 ) ? We will consider this problem in another paper.

Funding

D. Bian is supported by the NSFC (11871005, 11771041).

Acknowledgments

The author would like to thank G. Gui, Z. Xin and B. Guo for the helpful discussions.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Kulikovskiy, A.G.; Lyubimov, G.A. Magnetohydrodynamics; Addison-Wesley: Reading, MA, USA, 1965. [Google Scholar]
  2. Laudau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media, 2nd ed.; Pergamon: New York, NY, USA, 1984. [Google Scholar]
  3. Pratt, J.; Busse, A.; Müller, W.C. Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence. Astronom. Astrophys. 2013, 557, A76. [Google Scholar] [CrossRef]
  4. Duvaut, G.; Lions, J.L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 1972, 46, 241–279. [Google Scholar] [CrossRef]
  5. Sermange, M.; Temam, R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 1983, 36, 635–664. [Google Scholar] [CrossRef] [Green Version]
  6. Cao, C.; Wu, J. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 2011, 226, 1803–1822. [Google Scholar] [CrossRef] [Green Version]
  7. Lin, F.; Xu, L.; Zhang, P. Global small solutions of 2-D incompressible MHD system. J. Differ. Equ. 2015, 259, 5440–5485. [Google Scholar] [CrossRef]
  8. Lin, F.; Zhang, P. Global small solutions to an MHD-type system: the three-dimensional case. Comm. Pure Appl. Math. 2014, 67, 531–580. [Google Scholar] [CrossRef]
  9. Ren, X.; Wu, J.; Xiang, Z.; Zhang, Z. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 2014, 267, 503–541. [Google Scholar] [CrossRef]
  10. Cannon, J.R.; Dibenedetto, E. The Initial Value Problem for the Boussinesq with Data in Lp, Approximation Methods for Navier-Stokes Problems, Lecture Notes in Mathematics Volume; Springer: Berlin/Heidelberg, Germany, 1980; Volume 771, pp. 129–144. [Google Scholar]
  11. Wang, C.; Zhang, Z. Global well-posedness for 2-D Boussinesq system with the temperature-density viscosity and thermal diffusivity. Adv. Math. 2011, 228, 43–62. [Google Scholar] [CrossRef] [Green Version]
  12. Chae, D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 2006, 203, 497–513. [Google Scholar] [CrossRef] [Green Version]
  13. Hou, T.Y.; Li, C. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 2005, 12, 1–12. [Google Scholar] [CrossRef]
  14. Abidi, H.; Hmidi, T. On the global well-posedness for Boussinesq system. J. Differ. Equ. 2007, 233, 199–220. [Google Scholar] [CrossRef]
  15. Hmidi, T.; Keraani, S. On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math. J. 2009, 58, 1591–1618. [Google Scholar] [CrossRef] [Green Version]
  16. Lai, M.J.; Pan, R.; Zhao, K. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal. 2011, 199, 739–760. [Google Scholar] [CrossRef]
  17. Li, D.; Xu, X. Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity. Dyn. PDE 2013, 10, 255–265. [Google Scholar] [CrossRef] [Green Version]
  18. Danchin, R.; Paicu, M. Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull. Soc. Math. France 2008, 136, 261–309. [Google Scholar] [CrossRef] [Green Version]
  19. Hmidi, T.; Rousset, F. Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data. Annales de l’IHP Analyse non Linéaire 2010, 27, 1227–1246. [Google Scholar] [CrossRef] [Green Version]
  20. Hmidi, T.; Rousset, F. Global well-posedness for the Euler-Boussinesq system with axisymmetric data. J. Funct. Anal. 2011, 260, 745–796. [Google Scholar] [CrossRef] [Green Version]
  21. Fang, D.; Liu, C.; Qian, C. On partial regularity problem for 3D Boussinesq equations. J. Differ. Equ. 2017, 263, 4156–4221. [Google Scholar] [CrossRef]
  22. Lei, Z. On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differ. Equ. 2015, 259, 3202–3215. [Google Scholar] [CrossRef]
  23. Cao, C.; Wu, J. Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 2010, 248, 2263–2274. [Google Scholar] [CrossRef] [Green Version]
  24. He, C.; Xin, Z. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal. 2005, 227, 113–152. [Google Scholar] [CrossRef] [Green Version]
  25. He, C.; Xin, Z. On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 2005, 213, 235–254. [Google Scholar] [CrossRef] [Green Version]
  26. Kang, K.; Lee, J. Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J. Differ. Equ. 2009, 247, 2310–2330. [Google Scholar] [CrossRef] [Green Version]
  27. Cai, Y.; Lei, Z. Global well-posedness of the incompressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 2018, 228, 969–993. [Google Scholar] [CrossRef] [Green Version]
  28. He, L.; Xu, L.; Yu, P. On global dynamics of three dimensional magnetohydrodynamics: Nonlinear stability of Alfven waves. Ann. PDE 2018, 4, 5. [Google Scholar] [CrossRef] [Green Version]
  29. Titi, E.S.; Trabelsi, S. Global well-posedness of a 3D MHD model in porous media. J. Geom. Mech. 2019, 11, 621–637. [Google Scholar] [CrossRef] [Green Version]
  30. Bian, D. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discret. Contin. Dyn. Syst. Ser. S 2016, 9, 1591–1611. [Google Scholar] [CrossRef] [Green Version]
  31. Bian, D.; Gui, G. On 2-D Boussinesq equations for MHD convection with stratification effects. J. Differ. Equ. 2016, 261, 1669–1711. [Google Scholar] [CrossRef]
  32. Bian, D.; Liu, J. Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects. J. Differ. Equ. 2017, 263, 8074–8101. [Google Scholar] [CrossRef] [Green Version]
  33. Yu, Y.; Fei, M. Global well-posedness for the 2D MHD-Boussinesq system with temperature- dependent diffusion. Appl. Math. Lett. 2020, 106, 106399. [Google Scholar] [CrossRef]
  34. Larios, A.; Pei, Y. On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion. J. Differ. Equ. 2017, 263, 1419–1450. [Google Scholar] [CrossRef] [Green Version]
  35. Zhai, X.; Chen, Z. Global well-posedness for the MHD-Boussinesq system with the temperature-dependent viscosity. Nonlinear Anal. Real World Appl. 2018, 44, 260–282. [Google Scholar] [CrossRef]
  36. Bian, D.; Pu, X. Global Smooth Axisymmetic Solutions of the Boussinesq Equations for Magnetohydrodynamics Convection. J. Math. Fluid Mech. 2020, 22, 13. [Google Scholar] [CrossRef]
  37. Liu, H.; Bian, D.; Pu, X. Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion. Z. Angew. Math. Phys. 2019, 70, 81. [Google Scholar] [CrossRef]
  38. Li, Y. Global weak solutions to the three-dimensional inviscid Boussinesq system in the presence of magnetic field. Z. Angew. Math. Phys. 2019, 70, 172. [Google Scholar] [CrossRef]
  39. Majda, A.J. Introduction to PDEs and Waves for the Atmosphere and Ocean; American Mathematical Society: Providence, RI, USA, 2003. [Google Scholar]
  40. Ibrahim, S.; Yoneda, T. Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data. J. Math. Sci. Univ. Tokyo 2013, 20, 1–25. [Google Scholar]
  41. Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 1883, 14, 170–177. [Google Scholar] [CrossRef]
  42. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Dover: New York, NY, USA, 1981. [Google Scholar]
  43. Grenier, E. On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 2000, 53, 1067–1091. [Google Scholar] [CrossRef]
  44. Hwang, H.J.; Guo, Y. On the dynamical Rayleigh-Taylor instability. Arch. Ration. Mech. Anal. 2003, 167, 235–253. [Google Scholar] [CrossRef]
  45. Guo, Y.; Tice, I. Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ. Math. J. 2011, 60, 677–712. [Google Scholar] [CrossRef] [Green Version]
  46. Guo, Y.; Tice, I. Linear Rayleigh-Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 2011, 42, 1688–1720. [Google Scholar] [CrossRef]
  47. Jiang, F.; Jiang, S. On magnetic inhibition theory in non-resistive magnetohydrodynamic fluids. Arch. Ration. Mech. Anal. 2019, 233, 749–798. [Google Scholar] [CrossRef] [Green Version]
  48. Jiang, F.; Jiang, S. Nonlinear stability and instability in the Rayleigh-Taylor problem of stratified compressible MHD fluids. Calc. Var. Part. Differ. Equ. 2019, 58, 29. [Google Scholar] [CrossRef]
  49. Jiang, F.; Jiang, S. On the dynamical stability and instability of Parker problem. Physica D 2019, 391, 17–51. [Google Scholar] [CrossRef] [Green Version]

Share and Cite

MDPI and ACS Style

Bian, D. On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection. Mathematics 2020, 8, 1049. https://doi.org/10.3390/math8071049

AMA Style

Bian D. On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection. Mathematics. 2020; 8(7):1049. https://doi.org/10.3390/math8071049

Chicago/Turabian Style

Bian, Dongfen. 2020. "On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection" Mathematics 8, no. 7: 1049. https://doi.org/10.3390/math8071049

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop