1. Introduction
The traditional asset pricing models developed in the last couple of decades include risk factors such as the market risk, value, size, momentum, and illiquidity as the mostly popular and used ones ([
1,
2,
3,
4,
5]). Macroeconomic factors have been included over the years as well (see [
6,
7,
8]). Nevertheless, economic policy uncertainty has gotten attention recently once again. This is especially true after the global financial crisis in the late 2000s. The researchers in [
9,
10] have developed the EPU (economic policy uncertainty) index, which is based on newspaper coverage of policy-related economic uncertainty. Ever since, there has been a growing bulk of literature which utilizes the EPU variable in explaining asset risk-return relationship ([
11,
12,
13,
14,
15,
16], etc.) which finds significant results—investors seek higher return due to economic policy uncertainty risk premium. Moreover, increases in EPU are related to stock return decrease and volatility increase ([
13,
17,
18,
19]).
The importance of examining such a topic has been in the literature since the 1970s, with Merton’s [
20] inter-temporal asset pricing model. Here, it is assumed that investors hedge against shortfalls in consumption, i.e., there is a willingness to hold stocks with higher inter-temporal correlation with economic uncertainty in a portfolio. This is due to higher returns of such stocks when the economic uncertainty rises. Economic activity response to uncertainty has been examined in macroeconomic research as well since 1980s. The research of [
21,
22,
23,
24] are some of the prominent papers within this field. However, as mentioned previously, the last couple of years have experienced a rise of attention towards the consequences of uncertainty on financial markets. This is not only true within the academic research, but major international institutions recognize this as well (see [
25,
26,
27,
28,
29,
30,
31,
32,
33]).
Since the uncertainty has many effects on the whole economy, it represents an important task to evaluate those effects, their sources, and significance in different sectors of the economy. Moreover, the effects of EPU could lead to recessions [
12]. Existing research which focuses on financial and stock markets analyzes most developed markets and countries. There is less research regarding EPU and its interactions with selected variables on developing stock markets compared to more developed ones, which will be in the center of this study: selected Central and Eastern European (CEE) markets. Reasoning on why not much work has been done on CEE markets is due to lower liquidity [
34] and not being important to domestic investors [
35]. In this context, the purpose of this paper is to analyze the effect of EPU on stock market returns and risks; on the stock markets of Lithuania, Slovenia, Estonia, Poland, Hungary, Slovakia, Bulgaria, Czech Republic, and Croatia. The study utilizes monthly data (with different periods concerning each country), by estimating the VAR (vector autoregression) model and its extension with the [
36,
37] spillover index. The spillover index calculates the fraction of the
h-step error variance of variables in the VAR model which are results of the shocks in any of the variables in the model, in the total forecast error variations. Thus, this paper belongs to the strand of research based on [
17,
38] model in which the government policies are modelled as a source of economic uncertainty which affects the equity prices and risk premium.
The main contributions of the paper are as follows: first, the research observes a dynamic approach of the spillovers between EPU, return, and risk on selected CEE stock markets. This enables to analyze changes over time with respect to different economic and stock market conditions. Put differently, the dynamic analysis consists of estimating a rolling window model which enables to capture changes in estimated parameters and spillovers over time. Second, the gap in the literature is filled by observing stock markets which are under-analyzed within this field. The CEE stock markets are less often analyzed in the related research compared to other more developed markets. This is especially true within the area of economic and political uncertainties and their interactions with the stock market. Thus, the results obtained could be helpful both for (potential) international investors and policy-makers within these countries. Accordingly, results and recommendations will be given based on different results. Third, a detailed analysis of all directional spillover effects is observed so that net emitters and net receivers of shocks in the model could be analyzed over time. In other words, the analysis in this paper enables the interpretations when the EPU index affects stock markets more and vice versa. Thus, the rest of the paper is structured as follows.
Section 2 gives an overview of related previous research.
Section 3 describes the methodology used in
Section 4. The final section,
Section 5 concludes the paper with discussion.
2. Related Research Overview
Although the research on this topic is growing in the last couple of years, there are several common attributes in the majority of the work. Firstly, the majority of existing work focuses on most developed countries (USA, Germany, OECD countries in general), with little work found regarding less developed stock markets. Secondly, the methodological approach which is the most common is the VAR framework, sometimes ordinary regression analysis. Surprisingly, many papers do not include control variables in the study, which for sure could affect the results. Namely, not including country-specific (macro)economic specifics could result in spurious findings. Thirdly, a single-country approach is still the most common approach—meaning that the time-series approach is conducted most often. Next, return series are in the focus of the vast majority of papers, which means that EPU change effects are observed only in the return series. However, EPU affects the volatilities as well, as found in several papers. Thus, risk should not be ignored in research. Some newer research combines the regime-switching methodology in regression or VAR; the MGARCH (multivariate generalized autoregressive conditional heteroscedasticity) or the MIDAS (mixed data sampling) approach. The rest of this section focuses on most recent findings regarding stock markets, with a brief overview of papers which utilize EPU variable within macroeconomic research.
Whether the changes in EPU affect stock markets of the European Union was analyzed in [
39], with the inclusion of non-EU members in 2012: Croatia, Norway, Russia, Switzerland, Turkey, and Ukraine. The sample covered the period from January 1993 to April 2012 (monthly data). Using OLS (Ordinary Least Squares) regression, Sum (2012b) found that changes in EPU in Europe negatively affect all of the EU stock market returns with the exception of Bulgaria, Estonia, Latvia, Lithuania, Malta, Slovakia, and Slovenia. Other non-EU countries also were not affected by the EPU changes in the observed period. However, this research, as mentioned, utilized only OLS and without any control variables in the model. Thus, the results could be spurious. The same author [
40] then utilized VAR methodology (with impulse response function and Granger causality testing) on the same two variables (return series and EPU changes) for the US data (period: 1985 to 2011). The conclusion was that stock returns mostly negatively respond to EPU shocks (in the majority of months in the IRF estimates). Again, no control variables were used in the study. The researchers of [
38] are extensively focused on how government policy announcements impact stock market prices. The paper develops a theoretical model and use Bayesian modelling which showed that when the government announces its policy decisions, stock prices jump. The government can change or maintain its policy and the effect of its decision direction and size of the price jump. In addition, the price jumps depend on the extent to which this decision is unexpected. To conclude, [
38] found that EPU is related to stock market volatility, correlations, and jumps. Monthly data for EPU and market indices for 11 economies (Canada, China, France, Germany, India, Italy, Japan, Russia, Spain, the UK, and the US) was collected in [
41], from January 1998 to September 2014. Here, the link between EPU and stock prices was observed employing the coherency wavelet approach. The main result is that EPU and market indices have mostly negative relationship but during some periods, the relationship changes to a positive one (when changes occur from low to high-frequency cycles). How EPU can impact stock market volatility was investigated in [
42] by using a heterogeneous autoregressive realized volatility model (from 2 January 1996 to 24 June 2013) for the S&P (Standard and Poor’s) 500 index. Rolling window analysis was applied and the sample was divided into sub-samples to see if EPU can predict stock market volatility. The results indicate that EPU and stock market volatility are connected with EPU having significant predictive power on stock market volatility. This was based on in- and out-of-sample prediction comparisons.
The relationship between EPU and stock market returns for China and India was tested in [
43], using the bootstrap Granger full-sample causality test and sub-sample rolling window estimation. The sample included monthly data from February 1995 (2003) to February 2013 for China (India). On the one hand, there is no evidence of the relationship between the two observed variables for both markets, which is showed using the bootstrap full-sample causality test. On the other hand, the sub-sample rolling-window causality test found that there exists a bidirectional causal relationship between stock returns and movements in EPU for several sub-periods. To sum up, there is a weak relationship between EPU and stock market return in China and India. Again, the only observed variables in this study were the EPU index and the stock price. The aim of [
44] was to construct uncertainty indices for the Euro area (EA) and individual EA-member countries. One of the conclusions of this paper is that uncertainty was high during the financial crisis in the EA, as well as during the European sovereign debt crisis. In addition, most European countries share a similar uncertainty cycle. The analysis showed how the spillover-effects between countries increase during the financial and European sovereign debt crises. Thus, it can be expected that similar conclusions could arise for CEE markets in this study. The researches in [
45] wanted to explore whether EPU has an impact on the stock markets in the USA. To analyze this possible impact the regime-switching (RS) model was used. The sample consisted of monthly data for the US stock index and EPU index from 1900 to 2014. So much data enabled the utilization of the RS methodology to find business and stock market cycles. Three control variables were included in the study: changes in industrial production, default spread, and inflation. Results showed that the effect of policy uncertainty on the stock market is negative and weakly persistent. To enhance these findings, [
45] employed a three-regime switching model. The model suggested that EPU affects differently stock market returns depending on market states. This means that EPU has a greater impact on stock returns during extreme volatility periods. A bootstrap panel Granger causality test was applied in [
46] to observe the causal relationship between EPU and 9 stock markets (Canada, China, France, Germany, India, Italy, Spain, UK, and the USA) from January 2013 to December 2014. Findings in this paper indicate that there are some differences between countries: not all stock markets fall when negative EPUs arise. UK market was the most one to be affected by the EPU changes. Neutral results were found for Canada, China, France, Germany, and the USA. Researchers in [
47] observed how the EPU affects stock markets in Australia, Canada, China, Japan, Korea, and the USA (monthly data, from January 1998 to December 2014). Here, the impact of the US and individual country’s EPU shocks was tested on all mentioned markets using panel VAR model and IRF (impulse response function). In the analysis, the growth rate of industrial production, CPI (consumer price index) inflation rate, short-term interest (policy) rate, and the nominal effective exchange rates as the control variables were included. Results indicated the existence of a connection between uncertainty and stock markets: negative impact of own country EPU shocks on stock returns. The same results are found for US shocks for all countries except Australia where the effect was positive. Researches in [
48] focused on the causal relationship between economic policy uncertainty (EPU) and stock market prices for 14 OECD (Organisation for Economic Co-operation and Development) countries using the bootstrap panel Granger causality approach. To analyze the above-mentioned relationship, monthly data from March 2003 to April 2016 for the US, Japan, Germany, UK, France, Italy, Canada, South Korea, Australia, Spain, Netherlands, Sweden, Ireland, and Chile was used. The results suggested that the relationship between uncertainty and stock prices exists for all countries except Japan, Chile, and France.
The relationship between EPU and market volatility was examined in [
49] in the long run for the UK and US markets. Moreover, a long-run correlation between these two markets was observed as well. The study covered the period from January 1997 to April 2016 and daily data for S&P500 and FTSE100 (Financial Times and the London Stock Exchange) indices, with monthly data for EPU-s. Using the two-step DCC-MIDAS (dynamic conditional correlation mixed sampling data) model, results indicated that the US long-run stock market volatility depends significantly on its own EPU shocks, while the UK long-run stock market volatility depends significantly on both countries’ EPU shocks. Researchers in [
50] using VAR Granger-causality tests, IRFs, and variance decomposition analysis examined the relationship between EPU and stock market liquidity in India. The sample consisted of stocks that are listed on the National Stock Exchange (NSE) of India from the period of January 2013 to December 2016. The study used the stock price and several firm-specific variables. Rolling twelve-month reserve money growth rate, industrial production growth rate, inflation rate, and net funds flow from foreign institutional investors are used as macroeconomic control variables, while stock market volatility and stock market return were used as market-related control variables. The results showed that the relationship between EPU and stock market liquidity is significant. During normal market conditions, EPU influences stock market liquidity. On the other hand, IRFs showed negative effects of EPU on market liquidity which consequently strengthens the illiquidity of the stock market. Researchers in [
51] focused on the UK stocks and applied the time-varying parameter factor-augmented VAR model. The domestic and international economic uncertainty variable was used in the model, by firstly constructing the uncertainty variable from the principal component analysis. For the period from January 1996 to December 2015, results indicate that the economic activity uncertainty and UK EPU explain the cross-section of UK stock returns. Such a study is important nowadays due to uncertainties that arise from the Brexit vote and political on goings.
The other group of papers that employ the EPU variable in the analysis is the one in which authors look at interactions of EPU with macroeconomic variables. Since this is not of interest in this study, just a brief overview is given regarding this group of research. Theoretical work ranges from EPU effects on output [
52], investment [
53] to trade [
54], and capital flows [
55].
The aim of [
19] was to study the impact of EPU on the Indian economy (GDP growth, change in index of industrial production (IIP), change in fixed investment, and change in private consumption) in the period 2003–2012. The main conclusions include the existence of a negative correlation between the stock market index and EPU, as well as between the economic growth and uncertainty. To sum up, EPU significantly slows down investment in the country, industry, and firm levels. Researchers in [
56] employed a heterogeneous panel structural VARs on many countries over the world (including Europe, China, Western Hemisphere countries) to see how EPUs from different countries spillover towards others. The majority of the data used was quarterly, with different periods ranging for different countries (from the first quarter of 1985 until the fourth quarter of 2016). The main results indicate that EPU reduces real output growth, private consumption, and investment. Major emitters of EPU shocks to others were the US, Europe, and China.
Based on the papers mentioned above, uncertainty presented through the EPU index mostly has an impact on stock returns and volatility. Additionally, there are other types of measuring uncertainty. For example, [
57] used past data for the stock price and volume trading to predict future stock prices. More precisely, this paper aimed to perceive does the technical analysis work in Bulgarian Stock Market. Data used for the empirical part were daily data for the Bulgarian Stock Index from 21 November 2003, to 1 March 2018. For the observed period, they proved the existence of predictive power for technical analysis, meaning that uncertainty has an impact on stock prices. On the contrary, [
58] used data from 4 March 2005, to 11 December 2015, for stocks that were listed on the Bucharest Stock Exchange at the observed period. Using different econometric tests they concluded that technical analysis does not have predictive power on Romanian Stock Market. Daily data for the Dow Jones Emerging Markets Index from 31 December 1991 to 30 December 2011 was employed in [
59]. Based on out-of-sample analysis technical analysis has strong predictive power on short-term returns in emerging markets. Technical analysis was tested for 23 emerging markets in the paper by [
60], where data for Morgan Stanley Capital International (MSCI) Emerging Market Index (EMI) was used, which reflects equity indices for emerging markets for the period from 1 January 1988, to 5 May 2017. Results showed a strong predictive power of technical analysis for future prices of stocks. To sum up, [
60] concludes that the majority of researches support the predictive power of technical analysis.
As can be seen in this overview, less work is done on CEE markets (financial markets and the economy as a whole). Obtaining more information on this subject on the CEE markets can enable policymakers to enhance the development of these markets. This would make the CEE markets more attractive to international investors.
3. Methodology Description
This section describes the basics of the used methodology, namely the VAR model and its extension, the [
36,
37,
61] spillover index. More insights can be obtained in the mentioned papers, and the following ones: [
62,
63,
64,
65,
66,
67,
68]. A stabile VAR(
p) model with
N variables is observed in a compact form as follows:
where
Yt denotes the vector consisting of vectors
yt of variables in the model,
a = [
v 0 … 0]
, where
v is the vector of constants,
A =
and
εt is the innovation vector, with properties
E(
) =
0;
E(
) = Σ
ε < ∞;
E(
) = 0 for
t ≠
s. The impulse response functions (IRFs) are estimated based on the MA(∞) representation of model (1), given in the form:
i.e., in the polynomial form:
where Φ(
L) denotes the polynomial of the lag operator
L, containing impulse response coefficients. Due to innovation terms in
being correlated, the variance-covariance matrix Σ
ε is either ortogonalized via Choleski decomposition or the GFEVD approach (generalized forecast error variance decomposition) is utilized. The latter approach does not depend on variable ordering in the system. This paper utilizes the GFEVD approach in estimation.
The forecast error of the
h steps ahead is estimated as the difference between the actual and expected values:
et+h =
Yt+h −
E(
Yt+h). The mean squared error is then estimated for every element in
et+h as the following expected value:
E(
yj,t+h −
E(
yj,t+h))
2. Next, the variance (mean squared error) is decomposed into shares
of shocks in every variable in the model, as follows:
Thus, values in (4) represent the share of variance of variable
j in the
h step ahead forecast which is due to shocks in variable
k.
ej and
ek are the unit vectors from the matrix
INp. Now, the Diebold and Yilmaz [
36,
37,
61] spillover index (SI) is the following ratio:
where the numerator represents the sum of all shares in variances of the variables in the model, and the denominator represents the total forecast variance. Besides the total spillover in (5), the indices “from” and “to” spillovers are estimated to distinguish which variable in the model is the emitter of shocks and which is the receiver. The “from” SI is calculated via the formula:
whilst the “to” index is estimated as:
The net spillover index can be calculated as well as the difference between the two mentioned indices. Bivariate spillover indices can be estimated as well to see all possible pairs of spillovers between variables in the VAR model. Finally, the dynamic approach is often employed to evaluate spillovers over time and the changes of directions between them. This will be employed in this study as well, by estimating rolling SIs.
5. Discussion and Conclusions
Previous section findings indicate that the greatest spillovers between risk, return and EPU series are found for the Czech Republic, Lithuania, Slovenia, and Poland overall. These countries’ stock markets are connected to the political and economic uncertainty the most [
79,
80]. This means that stock markets in the mentioned countries react much more to changes in EPU compared to the rest of the observed sample. Thus, policymakers in those countries should pay special attention when making specific moves, since the stock markets will have greater reactions. Since the CEE countries are less developed compared to other markets, the policies aimed at CEE markets should take into consideration that EPU shocks affect these markets in a significant manner. Moreover, potential investors can expect stock market reactions from different EPU shocks on those markets, making their portfolios more vulnerable.
Next, the Bulgarian stock market is the least correlated with EPU overall (which is in line with [
90,
91]). This could potentially have positive diversification effects on international portfolios. Furthermore, policymakers could benefit from those insights, as to tailor their decisions with the knowledge that the political and economic shocks do not affect the Bulgarian market that much. Often (here and in previous literature) mentioned Brexit uncertainty of 2016 has affected the Czech, Estonian, and Poland markets greatest, with total SIs increasing for the three countries in the peak of the UK voting date and afterward (results are in line with [
83]). This indicates that the mentioned markets are more related to other developed markets and economies. Thus, investors should pay attention to economic and political shocks in the more developed countries more when having Czech, Estonian and Polish stocks in their portfolios. Other countries have somewhat individual results, with time-varying values of net spillovers of individual variables, as well as pairwise spillover indices. This means that investors should pay attention to all of the changes over time, and not use static estimation results, as the dynamics on these markets change often, which could affect the portfolio characteristics in terms of risk and/or return. If the anticipated spillovers are expected to be high, then for every individual country investor has to examine the magnitude and signs of the spillovers in order to rebalance his portfolio accordingly.
Reasoning on why the results are not identical for all countries lie upon facts that each country has its macroeconomic fundamentals and financial exposure, business cycle connectedness and synchronization ([
91]), with different tax and other relevant legislation, differences in account deficits (especially ECB (European Central Bank) liquidity and financial assistance during the sovereign debt crisis, see [
94] for comments on Baltic states), etc. All these for surely affect reactions of individual country risk and return series to European shocks. The model developed in [
17,
38] which is commonly used to explain the results of such analysis, describes the role of EPU in changing states of the economy.
The shortfalls of the study are as follows: The analyzed period for the majority of countries is rather short. This is observed as a shortfall in this study. Although some insights are given here, the results should be, of course, taken with some caution. Future work should extend the time sample if more data becomes available (not only new, but older ones become publicly available).
Future work should extend the analysis done in this research by looking at possibilities of asymmetric effects of EPU shocks on risk and return. Investor preference theory has a special part focused on asymmetric evaluation lower and upper tails of return distributions, as well as some financial models (e.g., GARCH family type models) differentiate between positive and negative news (innovation shocks). Another approach of observing asymmetries could be a quantile regression model, which is also gaining popularity in the literature due to capturing interesting results in extreme market conditions. Since the results of this paper found some significant results which were previously mentioned, there is more work to be done regarding the asymmetric models in the future. In that way, timely decisions in future policy conducting and portfolio selection (investing) could be obtained for better development of CEE markets and obtaining better portfolio results.