Dual Associate Null Scrolls with Generalized 1-Type Gauss Maps
Abstract
:1. Introduction
2. Preliminaries
- the dual associate curves of can be expressed by
- the dual associate null scrolls can be expressed by
3. Main Result
3.1. The Null Scroll with Generalized T-Lightlike Ruling
- has 1-type Gauss map of the first kind;
- has non-zero constant Gaussian curvature or non-zero constant mean curvature.
3.2. The Null Scroll with Generalized B-Lightlike Ruling
- has 1-type Gauss map of the first kind;
- has non-zero constant Gaussian curvature or non-zero constant mean curvature.
3.3. The Relationship between the Dual Associate Null Scrolls
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, B.Y.; Veken, J.; Nisar, S. Complete classification of parallel surfaces in 4-dimensional Lorentzian spaceforms. Tohoku Math. J. 2009, 61, 1–40. [Google Scholar] [CrossRef]
- Hanif, M.; Hou, Z.; Nisar, S. On special kinds of involute and evolute curves in 4-Dimensional Minkowski space. Symmetry 2018, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Izumiya, S.; Takeuchi, N. Generic properties of helices and Bertrand curves. J. Geom. 2002, 74, 97–109. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F. Mannheim partner curves in 3-space. J. Geom. 2008, 88, 120–126. [Google Scholar] [CrossRef]
- Qian, J.H.; Kim, Y.H. Directional associated curves of a null curve in . Bull. Korean Math. Soc. 2015, 52, 183–200. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.W. Classification of ruled surfaces in Minkowski 3-spaces. J. Geom. Phys. 2004, 49, 89–100. [Google Scholar] [CrossRef]
- Barros, M.; Ferrandez, A. How big is the family of stationary null scrolls? J. Geom. Phys. 2013, 64, 54–60. [Google Scholar] [CrossRef]
- Choi, S.M.; Ki, U.H.; Suh, Y.J. On the Gauss map of null scrolls. Tsukuba J. Math. 1998, 22, 273–279. [Google Scholar] [CrossRef]
- Pak, J.S.; Yoon, D.W. On null scrolls satisfying the condition ΔH=AH. Comm. Korean Math. Soc. 2000, 15, 533–540. [Google Scholar]
- Qian, J.H.; Fu, X.S.; Jung, S.D. Some Characterizations of Generalized Null Scrolls. Mathematics 2019, 7, 931. [Google Scholar] [CrossRef] [Green Version]
- Graves, L.K. Codimension one isometric immersions between Lorentz spaces. Trans. Am. Math. Soc. 1979, 252, 367–392. [Google Scholar] [CrossRef]
- Baikoussis, C. Ruled submanifolds with finite type Gauss map. J. Geom. 1994, 49, 42–45. [Google Scholar] [CrossRef]
- Chen, B.Y.; Piccinni, P. Submanifolds with finite type Gauss map. Bull. Aust. Math. Soc. 1987, 35, 161–186. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.H.; Kim, Y.H. Some classification of canal surfaces with the Guass map. Bull. Malays. Sci. Soc. 2019, 42, 3261–3272. [Google Scholar] [CrossRef]
- Qian, J.H.; Su, M.F.; Kim, Y.H. Canal surfaces with generalized 1-type Gauss map. Rev. Union Mat. Argent. preprint.
- Yoon, D.W.; Kim, D.S.; Kim, Y.H.; Lee, J.W. Hypersurfaces with generalized 1-type Guass maps. Mathematics 2018, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Ki, U.H.; Kim, D.S.; Kim, Y.H.; Roh, Y.M. Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space. Taiwan J. Math. 2009, 13, 317–338. [Google Scholar] [CrossRef]
- Inoguchi, J.; Lee, S. Null curves in Monkowski 3-space. Int. Electron. J. Geom. 2008, 1, 40–83. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Fu, X.; Jung, S.D. Dual Associate Null Scrolls with Generalized 1-Type Gauss Maps. Mathematics 2020, 8, 1111. https://doi.org/10.3390/math8071111
Qian J, Fu X, Jung SD. Dual Associate Null Scrolls with Generalized 1-Type Gauss Maps. Mathematics. 2020; 8(7):1111. https://doi.org/10.3390/math8071111
Chicago/Turabian StyleQian, Jinhua, Xueshan Fu, and Seoung Dal Jung. 2020. "Dual Associate Null Scrolls with Generalized 1-Type Gauss Maps" Mathematics 8, no. 7: 1111. https://doi.org/10.3390/math8071111
APA StyleQian, J., Fu, X., & Jung, S. D. (2020). Dual Associate Null Scrolls with Generalized 1-Type Gauss Maps. Mathematics, 8(7), 1111. https://doi.org/10.3390/math8071111