Existence and Stability Results on Hadamard Type Fractional Time-Delay Semilinear Differential Equations
Abstract
:1. Preliminaries
- For ,
- (i)
- if then ,
- (ii)
- if then
- (iii)
- if and then , .
2. Existence Uniqueness and Stability
- (A1)
- be a function such that with for any
- (A2)
- There exists a positive constant such that
3. Existence Result
4. Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diblík, J.; Fečkan, M.; Pospíšil, M. Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 2015, 65, 58–69. [Google Scholar] [CrossRef]
- Diblík, J.; Khusainov, D.Y.; Baštinec, J.; Sirenko, A.S. Exponential stability of linear discrete systems with constant coefficients and single delay. Appl. Math. Lett. 2016, 51, 68–73. [Google Scholar] [CrossRef]
- Khusainov, D.Y.; Shuklin, G.V. Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina. 2003, 17, 101–108. [Google Scholar]
- Medved’, M.; Pospíšil, M. Representation of solutions of systems linear differential equations with multiple delays and linear parts given by nonpermutable matrices. J. Math. Sci. 2018, 228, 276–289. [Google Scholar] [CrossRef]
- Pospíšil, M. Representation and stability of solutions of systems of functional differential equations with multiple delays. Electron. J. Qual. Theory Differ. Equ. 2012, 54, 1–30. [Google Scholar] [CrossRef]
- Diblík, J.; Khusainov, D.Y. Representation of solutions of discrete delayed system x(k+1)=Ax(k)+Bx(k−m)+f(k) with commutative matrices. J. Math. Anal. Appl. 2006, 318, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Diblík, J.; Khusainov, D.Y. Representation of solutions of linear discrete systems with constant coefficients and pure delay. Adv. Differ. Equ. 2006, 2006, 80825. [Google Scholar] [CrossRef] [Green Version]
- Pospíšil, M. Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform. Appl. Math. Comput. 2017, 294, 180–194. [Google Scholar]
- Mahmudov, N.I. Representation of solutions of discrete linear delay systems with non permutable matrices. Appl. Math. Lett. 2018, 85, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Khusainov, D.Y.; Shuklin, G.V. Relative controllability in systems with pure delay. Int. J. Appl. Math. 2005, 2, 210–221. [Google Scholar] [CrossRef]
- Medved’, M.; Pospíšil, M.; Škripková, L. Stability and the nonexistence of blowing-up solutions of nonlinear delay systems with linear parts defined by permutable matrices. Nonlinear Anal. 2011, 74, 3903–3911. [Google Scholar] [CrossRef]
- Medved’, M.; Pospíšil, M. Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 2012, 75, 3348–3363. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Exploring delayed M-L type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 2018, 324, 254–265. [Google Scholar] [CrossRef]
- Li, M.; Debbouche, A.; Wang, J.R. Relative controllability in fractional differential equations with pure delay. Math. Methods Appl. Sci. 2017, 41, 8906–8914. [Google Scholar] [CrossRef]
- Liang, C.; Wang, J.R.; O’Regan, D. Representation of solution of a fractional linear system with pure delay. Appl. Math. Lett. 2018, 77, 72–78. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, J.R. Finite time stability analysis of systems based on delayed exponential matrix. J. Appl. Math. Comput. 2017, 55, 335–351. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations. Math. Methods Appl. Sci. 2018, 42, 5489–5497. [Google Scholar] [CrossRef] [Green Version]
- Mahmudov, N.I. A novel fractional delayed matrix cosine and sine. Appl. Math. Lett. 2019, 92, 41–48. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Fractional Langevin type delay equations with two fractional derivatives. Appl. Math. Lett. 2020, 103, 106215. [Google Scholar] [CrossRef]
- Klimek, M. Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4689–4697. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, R.; Wang, J.; Ma, Y. Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 2014, 257, 436–445. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Analysis of nonlinear Hadamard fractional differential equations via properties of Mittag–Leffler functions. J. Appl. Math. Comput. 2018, 51, 487–508. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Initial value problems of fractional order Hadamard-type functional differential equations. Electron. J. Differ. Equ. 2015, 77, 9. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 348–360. [Google Scholar] [CrossRef]
- Matar, M.A. Solution of sequential Hadamard fractional differential equations by variation of parameter technique. Abstr. Appl. Anal. 2018, 2018, 9605353. [Google Scholar] [CrossRef] [Green Version]
- Matar, M.; Al-Salmy, O.A. Existence and uniqueness of solution for Hadamard fractional sequential differential equations. IUG J. Nat. Stud. 2017, 3, 141–147. [Google Scholar]
- Gambo, Y.Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Agrawal, R.P.; Alsaedi, A. New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions. Bound. Value Probl. 2013, 2013, 275. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Pei, K.; Agrawal, R.P.; Zhang, L.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Yukunthorn, W.; Ahmad, B.; Ntouyas, S.K.; Tariboon, J. On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions. Nonlinear Anal. Hybrid Syst. 2019, 19, 77–92. [Google Scholar] [CrossRef]
- Yang, P.; Wang, J.R.; Zhou, Y. Representation of solution for a linear fractional delay differential equation of Hadamard type. Adv. Differ. Equ. 2019, 2019, 300. [Google Scholar] [CrossRef] [Green Version]
- You, Z.; Fečkan, M.; Wang, J.R. Relative controllability of fractional delay differential equations via delayed perturbation of Mittag-Leffler functions. J. Comput. Appl. Math. 2020, 378, 112939. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmudov, N.; Al-Khateeb, A. Existence and Stability Results on Hadamard Type Fractional Time-Delay Semilinear Differential Equations. Mathematics 2020, 8, 1242. https://doi.org/10.3390/math8081242
Mahmudov N, Al-Khateeb A. Existence and Stability Results on Hadamard Type Fractional Time-Delay Semilinear Differential Equations. Mathematics. 2020; 8(8):1242. https://doi.org/10.3390/math8081242
Chicago/Turabian StyleMahmudov, Nazim, and Areen Al-Khateeb. 2020. "Existence and Stability Results on Hadamard Type Fractional Time-Delay Semilinear Differential Equations" Mathematics 8, no. 8: 1242. https://doi.org/10.3390/math8081242
APA StyleMahmudov, N., & Al-Khateeb, A. (2020). Existence and Stability Results on Hadamard Type Fractional Time-Delay Semilinear Differential Equations. Mathematics, 8(8), 1242. https://doi.org/10.3390/math8081242