On the Finite Orthogonality of q-Pseudo-Jacobi Polynomials
Abstract
:1. Introduction
2. Finite Orthogonality of q-Pseudo Jacobi Polynomials
Computing the Norm Square Value
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Szegö, G. Orthogonal Polynomials, 4th ed.; Colloquium Publications. XXIII; American Mathematical Society: Providence, RI, USA, 1939. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Volume 96 of Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Masjed-Jamei, M. Classical orthogonal polynomials with weight function ((ax + b)2 + (cx + d)2)−pexp(qarctan((ax + b)/(cx + d))), x∈(−∞,∞) and a generalization of T and F distributions. Integral Transform. Spec. Funct. 2004, 15, 137–153. [Google Scholar] [CrossRef]
- Vilenkin, N.J.; Klimyk, A.U. Representation of Lie Groups and Special Functions; Volume 75 of Mathematics and its Applications (Soviet Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1992; Volume 3. [Google Scholar]
- Koornwinder, T.H. Orthogonal polynomials in connection with quantum groups. In Orthogonal Polynomials (Columbus, OH, 1989); Volume 294 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1990; pp. 257–292. [Google Scholar]
- Koornwinder, T.H. Compact quantum groups and q-special functions. In Representations of Lie Groups and Quantum Groups (Trento, 1993); Volume 311 of Pitman Res. Notes Math. Ser.; Longman Sci. Tech.: Harlow, UK, 1994; pp. 46–128. [Google Scholar]
- Álvarez-Nodarse, R.; Atakishiyev, N.M.; Costas-Santos, R.S. Factorization of the hypergeometric-type difference equation on non-uniform lattices: Dynamical algebra. J. Phys. A 2005, 38, 153–174. [Google Scholar] [CrossRef]
- Grünbaum, F.A. Discrete models of the harmonic oscillator and a discrete analogue of Gauss’ hypergeometric equation. Ramanujan J. 2001, 5, 263–270. [Google Scholar] [CrossRef]
- Atakishiyev, N.M.; Klimyk, A.U.; Wolf, K.B. A discrete quantum model of the harmonic oscillator. J. Phys. A 2008, 41, 085201. [Google Scholar] [CrossRef] [Green Version]
- Masjed-Jamei, M.; Soleyman, F.; Koepf, W. Two finite sequences of symmetric q-orthogonal polynomials generated by two q-sturm-liouville problems. Rep. Math. Phys. 2020, 85, 41–55. [Google Scholar] [CrossRef]
- Masjed-Jamei, M. A generalization of classical symmetric orthogonal functions using a symmetric generalization of Sturm-Liouville problems. Integral Transform. Spec. Funct. 2007, 18, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Koornwinder, T.H. Additions to the formula lists in “Hypergeometric orthogonal polynomials and their q-analogues” by Koekoek, Lesky and Swarttouw. arXiv 2015, arXiv:1401.0815. [Google Scholar]
- Nikiforov, A.F.; Uvarov, V.B. Polynomial solutions of hypergeometric type difference equations and their classification. Integral Transform. Spec. Funct. 1993, 1, 223–249. [Google Scholar] [CrossRef]
- Jirari, A. Second-order Sturm-Liouville difference equations and orthogonal polynomials. Mem. Am. Math. Soc. 1995, 116, 542. [Google Scholar] [CrossRef]
- Nikiforov, A.F.; Suslov, S.K.; Uvarov, V.B. Classical Orthogonal Polynomials of a Discrete Variable; Springer Series in Computational Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Thomae, J. Beiträge zur Theorie der durch die Heinesche Reihe darstellbaren Functionen. J. Reine Angew. Math. 1869, 70, 258–281. [Google Scholar]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Gordon and Breach Science Publishers: New York, NY, USA, 1978. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masjed-Jamei, M.; Saad, N.; Koepf, W.; Soleyman, F. On the Finite Orthogonality of q-Pseudo-Jacobi Polynomials. Mathematics 2020, 8, 1323. https://doi.org/10.3390/math8081323
Masjed-Jamei M, Saad N, Koepf W, Soleyman F. On the Finite Orthogonality of q-Pseudo-Jacobi Polynomials. Mathematics. 2020; 8(8):1323. https://doi.org/10.3390/math8081323
Chicago/Turabian StyleMasjed-Jamei, Mohammad, Nasser Saad, Wolfram Koepf, and Fatemeh Soleyman. 2020. "On the Finite Orthogonality of q-Pseudo-Jacobi Polynomials" Mathematics 8, no. 8: 1323. https://doi.org/10.3390/math8081323
APA StyleMasjed-Jamei, M., Saad, N., Koepf, W., & Soleyman, F. (2020). On the Finite Orthogonality of q-Pseudo-Jacobi Polynomials. Mathematics, 8(8), 1323. https://doi.org/10.3390/math8081323