On the Extrinsic Principal Directions and Curvatures of Lagrangian Submanifolds
Abstract
:1. The Extrinsic Tangential Principal Directions of Submanifolds
2. Felice Casorati’s Study of Surfaces in
3. The First Normal Principal Directions of Submanifolds
4. The Principal Tangent and the First Principal Normal Directions of Lagrangian Submanifolds
Author Contributions
Funding
Conflicts of Interest
References
- Jordan, C. Généralization du théorème d’Euler sur la courbure des surfaces. C. R. Acad. Sci. Paris 1874, 79, 909–912. [Google Scholar]
- Trenčevski, K. Principal directions for submanifolds imbedded in Euclidean spaces of arbitrary codimension. Proc. Third Intern. Workshop on Diff. Geom. Appl. First Ger. Rom. Semin. Geom. Gen. Math. 1997, 5, 385–392. [Google Scholar]
- Trenčevski, K. New approach for submanifolds of the Euclidean space. Balkan J. Geom. Appl. 1997, 2, 117–127. [Google Scholar]
- Trenčevski, K. Geometrical interpretation of the principal directions and principal curvatures of submanifolds. Diff. Geom. Dyn. Syst. 2000, 2, 50–58. [Google Scholar]
- Trenčevski, K. On the osculating spaces of submanifolds in Euclidean spaces. Kragujevic J. Math. 2012, 36, 45–49. [Google Scholar]
- Haesen, S.; Kowalczyk, D.; Verstraelen, L. On the extrinsic principal directions of Riemannian submanifolds. Note Mat. 2009, 29, 41–51. [Google Scholar]
- Verstraelen, L. Geometry of submanifolds I. The first Casorati curvature indicatrices. Kragujevic J. Math. 2013, 37, 5–23. [Google Scholar]
- Casorati, F. Mesure de la courbure des surfaces suivant l’idée commune. Acta Math. 1890, 14, 95–110. [Google Scholar] [CrossRef]
- Verstraelen, L. Submanifolds Theory—A Contemplation of Submanifolds, “Frontmatter” in Geometry of Submanifolds, AMS Contemporary Mathematics; volume in honor of Professor Bang-Yen Chen; Van der Veken, J., Cariazo, A., Suceava, B.D., Oh, Y.M., Vrancken, L., Eds.; American Mathematical Society: Providence, RI, USA, 2020. [Google Scholar]
- Chen, B.Y. Geometry of Submanifolds; Marcel Dekker Publ. Co.: New York, NY, USA, 1973. [Google Scholar]
- Chen, B.Y. Riemannian submanifolds. In Handbook of Differential Geometry; Dillen, F.J.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 1, Chapter 3; pp. 187–418. [Google Scholar]
- Rouxel, B. Sur quelques propriétés anallagmatiques de l’espace euclidien 𝔼4. In Mémmoire Couronné; Acad. Royale Belge: Brussels, Belgium, 1982; 128p. [Google Scholar]
- Chen, B.Y.; Ogiue, K. On totally real submanifolds. Trans. Am. Math. Soc. 1974, 193, 257–266. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moruz, M.; Verstraelen, L. On the Extrinsic Principal Directions and Curvatures of Lagrangian Submanifolds. Mathematics 2020, 8, 1533. https://doi.org/10.3390/math8091533
Moruz M, Verstraelen L. On the Extrinsic Principal Directions and Curvatures of Lagrangian Submanifolds. Mathematics. 2020; 8(9):1533. https://doi.org/10.3390/math8091533
Chicago/Turabian StyleMoruz, Marilena, and Leopold Verstraelen. 2020. "On the Extrinsic Principal Directions and Curvatures of Lagrangian Submanifolds" Mathematics 8, no. 9: 1533. https://doi.org/10.3390/math8091533
APA StyleMoruz, M., & Verstraelen, L. (2020). On the Extrinsic Principal Directions and Curvatures of Lagrangian Submanifolds. Mathematics, 8(9), 1533. https://doi.org/10.3390/math8091533