Modeling Soil Water Redistribution under Gravity Irrigation with the Richards Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solution in Finite Difference by Local Balance of Mass
2.2. Boundary Conditions
2.3. The Analytical Solution of Infiltration
3. Results and Discussion
3.1. Comparison between Numerical and Analytical Solutions
3.2. Simulations under Different Boundary Conditions
3.3. Evaporation and Transpiration Processes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuentes, C.; De León-Mojarro, B.; Hernández-Saucedo, F.R. Gravity irrigation hydraulics. In Gravity Irrigation; Fuentes, C., Rendón, L., Eds.; Nacional Association of Irrigation Specialist: Mexico, Spain, 2017; pp. 1–66. [Google Scholar]
- Chávez, C.; Fuentes, C. Design and evaluation of surface irrigation systems applying an analytical formula in the irrigation district 085, La Begoña, Mexico. Agric. Water Manag. 2019, 221, 279–285. [Google Scholar] [CrossRef]
- Morbidelli, R.; Corradini, C.; Saltalippi, C.; Flammini, A.; Dari, J.; Govindaraju, R.S. Rainfall Infiltration Modeling: A Review. Water 2018, 10, 1873. [Google Scholar] [CrossRef] [Green Version]
- Saint-Venant, A.J.C.; Barre, D. Théorie du mouvement non permant des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lits. C. R. Séances l’Academie Sci. 1871, 73, 147–154, 237–240. [Google Scholar]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Parlange, J.Y. On solving the flow equation in unsaturated soils by optimization: Horizontal infiltration. Soil Sci. Soc. Am. Proc. 1975, 39, 415–418. [Google Scholar] [CrossRef]
- Saucedo, H.; Zavala, M.; Fuentes, C. Complete hydrodynamic model for border irrigation. Water Technol. Sci. 2011, 2, 23–38. [Google Scholar]
- Saucedo, H.; Zavala, M.; Fuentes, C.; Castanedo, V. Optimal flow model for plot irrigation. Water Technol. Sci. 2013, 4, 135–148. [Google Scholar]
- Saucedo, H.; Fuentes, C.; Zavala, M. The Saint-Venant and Richards equation system in surface irrigation: 2) Numerical coupling for the advance phase in border irrigation. Ing. Hidraul. Mex. 2005, 20, 109–119. [Google Scholar]
- Darcy, H. Dètermination des lois d’ècoulement de l’eau à travers le sable. In Les Fontaines Publiques de la Ville de Dijon; Dalmont, V., Ed.; Victor Dalmont: Paris, France, 1856; pp. 590–594. [Google Scholar]
- Fuentes, C.; Haverkamp, R.; Parlange, J.Y. Parameter constraints on closed–form soil-water relationships. J. Hydrol. 1992, 134, 117–142. [Google Scholar] [CrossRef]
- Fujita, H. The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, part II. Text. Res. J. 1952, 22, 823–827. [Google Scholar] [CrossRef]
- Parlange, J.Y.; Braddock, R.D.; Lisle, I.; Smith, R.E. Three parameter infiltration equation. Soil Sci. 1982, 111, 170–174. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Burdine, N.T. Relative permeability calculation from size distributions data. Trans. AIME 1953, 198, 171–199. [Google Scholar]
- Brooks, R.H.; Corey, A.T. Hydraulic properties of porous media. In Hydrology Papers; Colorado State University: Colorado, CO, USA, 1964; Volume 3. [Google Scholar]
- Zataráin, F.; Fuentes, C.; Palacios, V.O.L.; Mercado, E.J.; Brambila, F.; Villanueva, N. Modelación del transporte de agua y de solutos en el suelo. Agrociencia 1998, 32, 373–383. [Google Scholar]
- Bouwer, H. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 1964, 36, 411–424. [Google Scholar] [CrossRef]
- Cano, M.A. Caracterización Hidrodinámica del Suelo in Situ y Cálculo de Percolación y Evapotranspiración en Riego por Goteo. Master’s Thesis, Centro de Hidrociencias del Colegio de Postgraduados, Montecillo, Texcoco, México, 1990. [Google Scholar]
- Fuentes, C.; Chávez, C.; Saucedo, H.; Zavala, M. On an exact solution of the non-linear Fokker-Planck equation with sink term. Water Technol. Sci. 2011, 2, 117–132. [Google Scholar]
- Chávez, C.; Antonino, A.C.D.; Fuentes, C. Numerical solution of the infiltration equation. In Gravity Irrigation; Fuentes, C., Rendón, L., Eds.; Nacional Association of Irrigation Specialist: Mexico, 2017; pp. 215–252. [Google Scholar]
- Fuentes, C. Approche Fractale des Transferts Hydriques dans les sols non Saturès. Ph.D. Thesis, de la Universidad Joseph Fourier de Grenoble, Grenoble, France, 1992; p. 267. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, S.; Trejo-Alonso, J.; Quevedo, A.; Fuentes, C.; Chávez, C. Modeling Soil Water Redistribution under Gravity Irrigation with the Richards Equation. Mathematics 2020, 8, 1581. https://doi.org/10.3390/math8091581
Fuentes S, Trejo-Alonso J, Quevedo A, Fuentes C, Chávez C. Modeling Soil Water Redistribution under Gravity Irrigation with the Richards Equation. Mathematics. 2020; 8(9):1581. https://doi.org/10.3390/math8091581
Chicago/Turabian StyleFuentes, Sebastián, Josué Trejo-Alonso, Antonio Quevedo, Carlos Fuentes, and Carlos Chávez. 2020. "Modeling Soil Water Redistribution under Gravity Irrigation with the Richards Equation" Mathematics 8, no. 9: 1581. https://doi.org/10.3390/math8091581
APA StyleFuentes, S., Trejo-Alonso, J., Quevedo, A., Fuentes, C., & Chávez, C. (2020). Modeling Soil Water Redistribution under Gravity Irrigation with the Richards Equation. Mathematics, 8(9), 1581. https://doi.org/10.3390/math8091581