Next Article in Journal
Ulam Type Stability of ?-Quadratic Mappings in Fuzzy Modular ∗-Algebras
Next Article in Special Issue
Some Remarks on Fuzzy sb-Metric Spaces
Previous Article in Journal
Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions
Previous Article in Special Issue
Common Attractive Points of Generalized Hybrid Multi-Valued Mappings and Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On \({\mathcal{F}}\)-Contractions for Weak α-Admissible Mappings in Metric-Like Spaces

by
Jelena Vujaković
1,*,
Slobodanka Mitrović
2,
Zoran D. Mitrović
3 and
Stojan Radenović
4
1
Faculty of Sciences and Mathematics, University of Priština, Lole Ribara 29, 38 200 Kosovska Mitrovica, Serbia
2
Faculty of Forestry, Kneza Višeslava 1, University of Belgrade, 11 030 Beograd, Serbia
3
Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78 000 Banja Luka, Bosnia and Herzegovina
4
Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11 120 Beograd, Serbia
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(9), 1629; https://doi.org/10.3390/math8091629
Submission received: 25 August 2020 / Revised: 13 September 2020 / Accepted: 18 September 2020 / Published: 21 September 2020

Abstract

:
In the paper, we consider some fixed point results of F -contractions for triangular α -admissible and triangular weak α -admissible mappings in metric-like spaces. The results on F -contraction type mappings in the context of metric-like spaces are generalized, improved, unified, and enriched. We prove the main result but using only the property ( F 1 ) of the strictly increasing mapping F : 0 , + , + . Our approach gives a proper generalization of several results given in current literature.

1. Introduction and Preliminaries

First, we recall some notions introduced recently in several papers.
In 2012, Samet et al. [1] introduced the concept of α -admissible mappings as follows.
Definition 1.
Let T : X X and α : X 2 [ 0 , + ) . Then, T is called α-admissible if for all ξ , ζ X with α ξ , ζ 1 implies α T ξ , T ζ 1 .
Furthermore, one says that T is a triangular α -admissible mapping if it is α -admissible and if
α ξ , η 1 and α η , ζ 1 implies α ξ , ζ 1 , ξ , ζ , η X .
For triangular α -admissible mapping, the following result is known ([2], Lemma 7):
Lemma 1.
Let T be a triangular α-admissible mapping. Assume that there exists ξ 0 X such that α ξ 0 , T ξ 0 1 . Define sequence ξ n by ξ n = T n ξ 0 . Then,
α ξ m , ξ n 1 for all m , n N 0 with m < n .
In [3], the author presented the notion of weak α -admissible mappings as follows:
Definition 2.
Let X be a nonempty set and let α : X 2 [ 0 , + ) be a given mapping. A mapping T : X X is said to be a weak α-admissible one if the following condition holds:
for ξ X with α ξ , T ξ 1 i m p l i e s α T ξ , T 2 ξ 1 .
Remark 1.
It is customary to write A X , α and W A X , α as the collection of all (triangular) α-admissible mappings on X and the collection of all (triangular) weak α-admissible mappings on X (see[3]). One can verify that A X , α W A X , α .
Now, we recall some basic concepts, notations, and known results from partial metric and metric-like spaces. In 1994 Matthews ([4]) introduced notion of partial metric space as follows.
Definition 3.
Let X be a nonempty set. A mapping d p m : X 2 [ 0 , + ) is said to be a partial metric on X if for all ξ , ζ , η X the following four conditions hold:
(1) 
ξ = ζ if and only if d p m ξ , ξ = d p m ξ , ζ = d p m ζ , ζ ;
(2) 
d p m ξ , ξ d p m ξ , ζ ;
(3) 
d p m ξ , ζ = d p m ζ , ξ ;
(4) 
d p m ξ , η d p m ξ , ζ + d p m ζ , η d p m ζ , ζ .
In this case, the pair X , d p m is called a partial metric space. Obviously, every metric space is a partial metric space. The inverse is not true. Indeed, let X = [ 0 , + ) and d p m ξ , ζ = max ξ , ζ . Under these conditions X , d p m is a partial metric space but is not a metric space because d p m 1 , 1 = 1 > 0 . For more details, see ([5,6,7,8,9,10,11]).
For the following notion see [12].
Definition 4.
Let X be a nonempty set. A mapping d m l : X 2 [ 0 , + ) is said to be a metric-like on X if for all ξ , ζ , η X the following three conditions hold:
(1) 
d m l ξ , ζ = 0 implies ξ = ζ ;
(2) 
d m l ξ , ζ = d m l ζ , ξ ;
(3) 
d m l ξ , η d m l ξ , ζ + d m l ζ , η .
The pair X , d m l is called a metric-like space or dislocated metric space by some authors. A metric-like mapping d m l on X satisfies all the conditions of a metric except that d m l ξ , ξ may be positive for some ξ X . The following is a list of some metric-like spaces:
1.  , d m l , where d m l ξ , ζ = max ξ , ζ for all ξ , ζ .
One can see that , d m l is a metric-like space, but it is not a metric space, due to the fact that d m l 2 , 2 = 2 > 0 . On the other hand, , d m l is a partial metric space.
2.  [ 0 , + ) , d m l , where d m l ξ , ζ = ξ + ζ for all ξ , ζ [ 0 , + ) .
It is clear that [ 0 , + ) , d m l is a metric-like space where d m l ξ , ξ > 0 for each ξ > 0 . Since d m l 2 , 2 = 2 + 2 = 4 > 3 = 2 + 1 = d m l 2 , 1 , it follows that d m l ξ , ξ d m l ξ , ζ does not hold. Hence, [ 0 , + ) , d m l is not a partial metric space.
3.  ( X , d m l ) , where X = { 0 , 1 , 2 } and d m l ( 0 , 0 ) = d m l ( 1 , 1 ) = 0 , d m l ( 2 , 2 ) = 5 2 , d m l ( 0 , 2 ) = d m l ( 2 , 0 ) = 2 , d m l ( 1 , 2 ) = d m l ( 2 , 1 ) = 3 , d m l ( 0 , 1 ) = d m l ( 1 , 0 ) = 3 2 .
It is clear that X , d m l is a metric-like (that is a dislocated metric) space with d m l 2 , 2 > 0 . This means that X , d m l is not a standard metric space. However, X , d m l is also not a partial metric space because d m l 2 , 2 d m l 2 , 0 .
4.  X , d m l , where X = C 0 , 1 , is the set of real continuous functions on 0 , 1 and d m l f , g = sup t 0 , 1 f t + g t for all f , g C 0 , 1 , .
This is an example of metric-like space that is not a partial metric space. Indeed, for f t = 2 t , we obtain d m l f , f = sup t 0 , 1 2 t + 2 t = 4 > 0 . Putting g t 0 for all t 0 , 1 , we obtain that d m l f , f = 4 d m l f , g = d m l f , 0 = 2 .
Note that some of the metric-like spaces given in the list are not partial metric spaces. It is clear that a partial metric space is a metric-like space and the inverse is not true. Now, we give the definitions of convergence and Cauchyiness of the sequences in metric-like space (see [12]).
Definition 5.
Let ξ n be a sequence in a metric-like space X , d m l .
(i) 
The sequence ξ n is said to be convergent to ξ X if lim n + d m l ξ n , ξ = d m l ξ , ξ ;
(ii) 
The sequence ξ n is said to be d m l —Cauchy in X , d m l if lim n , m + d m l ξ n , ξ m exists and is finite;
(iii) 
A metric-like space X , d m l is d m l —complete if for every d m l Cauchy sequence ξ n in X there exists an ξ X such that lim n , m + d m l ξ n , ξ m = d m l ξ , ξ = lim n + d m l ξ n , ξ .
More details on partial metric and metric-like spaces can be found in ([5,6,7,11,13,14,15,16,17,18]), and information on other classes of generalized metric spaces and contractive mappings can be found in: ([1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37]).
Remark 2.
In metric-like space (as in the partial metric space), the limit of a sequence need not be unique and a convergent sequence need not be a d m l —Cauchy sequence (see examples in Remark 1.4 (1) and (2) in [10]). However, if the sequence ξ n is d m l Cauchy such that lim n , m + d m l ξ n , ξ m = 0 in d m l complete metric-like space X , d m l , then the limit of such sequence is unique. Indeed, in such a case if ξ n ξ as n + , we get that d m l ξ , ξ = 0 (by (iii) of Definition 5). Now, if ξ n ξ , ξ n ζ and ξ ζ , we obtain
d m l ξ , ζ d m l ξ , ξ n + d m l ξ n , ζ d m l ξ , ξ + d m l ζ , ζ = 0 + 0 = 0 .
By (1) from Definition 4, it follows that ξ = ζ , which is a contradiction.
Now, we give the definition of the continuity for self-mapping T defined on a metric-like space X , d m l as follows (see for example [10,11,34]):
Definition 6.
Let X , d m l be a metric-like space and T : X X be a self-mapping. We say that T is d m l continuous in point ξ X if lim n + d m l T ξ n , T ξ = d m l T ξ , T ξ , for each sequence ξ n X such that lim n + d m l ξ n , ξ = d m l ξ , ξ . In other words, the mapping T : X X is d m l continuous if the following holds true:
ξ n d m l ξ i m p l i e s T ξ n d m l T ξ .
Definition 7.
Let X , d m l be a metric-like space. A sequence ξ n in it is called 0 d m l Cauchy sequence if lim n , m + d m l ξ n , ξ m = 0 . The space X , d m l is said to be 0 d m l complete if every 0 d m l Cauchy sequence in X converges to a point ξ X such that d m l ξ , ξ = 0 .
It is obvious that every 0 d m l Cauchy sequence is a d m l Cauchy sequence in X , d m l and every d m l complete metric-like space is a 0 d m l complete metric-like space. In addition, every 0 complete partial metric space X , d m l is a 0 d m l complete metric-like space. In the sequel, some results on metric-like spaces are given. Proofs to most of the results are self-evident.
Proposition 1.
Let X , d m l be a metric-like space. Then, we have the following:
(i) 
If the sequence ξ n converges to ξ X as n + and if d m l ξ , ξ = 0 , then, for all ζ X , it follows that d m l ξ n , ζ d m l ξ , ζ ;
(ii) 
If d m l ξ , ζ = 0 , then d m l ξ , ξ = d m l ζ , ζ = 0 ;
(iii) 
If ξ n is a sequence such that lim n + d m l ξ n , ξ n + 1 = 0 , then
lim n + d m l ξ n , ξ n = lim n + d m l ξ n + 1 , ξ n + 1 = 0 ;
(iv) 
If ξ ζ , then d m l ξ , ζ > 0 ;
(v) 
d m l ξ , ξ 2 n i = 1 n d m l ξ , ξ i holds for all ξ , ξ i X , where 1 i n ;
(vi) 
Let ξ n be a sequence such that lim n + d m l ξ n , ξ n + 1 = 0 . If lim n , m + d m l ξ n , ξ m 0 , then there exists ε > 0 and sequences m k and n k such that n k > m k > k , and the following sequences tend to ε when k + :
d m l ξ n k , ξ m k , d m l ξ n k + 1 , ξ m k , d m l ξ n k , ξ m k 1 , d m l ξ n k + 1 , ξ m k 1 , d m l ξ n k + 1 , ξ m k + 1 .
Notice that, if the condition (vi) is satisfied then the sequences d m l ξ n k + q , ξ m k and d m l ξ n k + q , ξ m k + 1 also converge to ε when k + , where q N . For more details on (i)–(vi), the reader can see in ([26,27,36]). The concept of F -contraction was introduced by Wardowski in [16] (for more details, see also: [5,9,14,15,16,17,18,24,28,31,32,33]).
Definition 8.
Let F : 0 , + , + be a mapping satisfying the following:
( F 1 )
F is a strictly increasing, that is, for α , β 0 , + , α < β implies F α < F β ,
( F 2 )
For each sequence α n 0 , + , lim n + α n = 0 if and only if lim n + F α n = ,
( F 3 )
There exists k 0 , 1 such that lim α 0 + α k F α = 0 .
Definition 9.
Let X , d be a metric space. A mapping T : X X is said to be an F -contraction if there exist F : 0 , + , + satisfying ( F 1 ), ( F 2 ) and ( F 3 ) and τ > 0 such that
d T ξ , T ζ > 0 i m p l i e s τ + F d T ξ , T ζ F d ξ , ζ ,
for all ξ , ζ X .
In 2014, Piri and Kumam [32] investigated some fixed point results concerning F contraction in complete metric spaces by replacing the condition ( F 3 ) with the condition:
( F 3 )
F is continuous on 0 , + .
Recently, in 2018, Qawaqueh et al. ([9]) defined and proved the following:
Definition 10.
Let X , d m l be a metric-like space and α : X 2 [ 0 , + ) . A mapping T : X X is said to be an α , β , F -Geraghty contraction mapping if there exist β G and τ > 0 such that, for all ξ , ζ X with d T ξ , T ζ > 0 and α ξ , ζ 1 ,
α ξ , ζ τ + F d m l T ξ , T ζ β M ξ , ζ F M ξ , ζ ,
where
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d m l ξ , T ζ + d m l T ξ , ζ 4 , 1 + d m l ξ , T ξ d m l ζ , T ζ 1 + d m l ξ , ζ ,
F : 0 , + , + is strictly increasing function satisfying ( F 1 ), ( F 2 ) and ( F 3 ) and G is a family of all functions β : [ 0 , + ) [ 0 , 1 ) which satisfy the condition: β t n 1 implies t n 0 as + .
It is worth noticing that authors in [9] denote with E X , α , β , F the collection of all almost generalized α , β , F -contractive mappings. However, it is not clear what “almost generalized α , β , F -contractive mappings” mean.
Theorem 1.
Let X , d m l be a metric-like space and α : X 2 [ 0 , + ) . A mapping T : X X be an α , β , F -Geraghty contraction mapping. Assume that the following conditions are satisfied:
(i) 
T E X , α , β , F W A X , α .
(ii) 
There exists ξ 0 X such that d m l ξ 0 , T ξ 0 1 .
(iii) 
T is d m l continuous.
Then, T has a unique fixed point η X with d m l η , η = 0 .

2. Main Result

In this section, we improve the whole concept by introducing a new definition and new approaches. Firstly, we introduce the following:
Definition 11.
Let X , d m l be a metric-like space and α : X 2 [ 0 , + ) . A mapping T : X X is said to be a triangular α , F -contraction one if there exists τ > 0 such that, for all ξ , ζ X with d m l T ξ , T ζ > 0 and α ξ , ζ 1 holds true,
α ξ , ζ τ + F d m l T ξ , T ζ F M ξ , ζ ,
where
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d m l ξ , T ζ + d m l ζ , T ξ 2 , 1 + d m l ξ , T ξ d m l ζ , T ζ 1 + d m l ξ , ζ ,
F : 0 , + , + is strictly increasing function.
Example 3 from [9], for instance, illustrates the validity of this definition but without the function β : 0 , + 0 , 1 . Definition 11 is an improvement of the definition given in [9] in several directions. Now, we prove the main result of our paper:
Theorem 2.
Let X , d m l be a 0 d m l complete metric-like space and α : X 2 [ 0 , + ) . Assume that a mapping T : X X is a triangular α , F -contraction one. Suppose further that the following conditions are satisfied:
(i) 
T W A X , α ;
(ii) 
There exists ξ 0 X such that α ξ 0 , T ξ 0 1 ;
(iii) 
T is d m l continuous.
Then, T has a unique fixed point ξ ^ X with d m l ξ ^ , ξ ^ = 0 .
Proof. 
First of all, we show the following two claims:
I.
If ξ ^ is a fixed point of T then d m l ξ ^ , ξ ^ = 0 .
II.
The uniqueness of a possible fixed point.
Firstly, we prove I. Indeed, if ξ ^ is a fixed point of T and if d m l ξ ^ , ξ ^ > 0 , then, putting ξ = ζ = ξ ^ in (8), we get
τ + F d m l T ξ ^ , T ξ ^ α ξ ^ , ξ ^ τ + F d m l T ξ ^ , T ξ ^ F M ξ ^ , ξ ^ ,
where
M ξ ^ , ξ ^ = max d m l ξ ^ , ξ ^ , d m l ξ ^ , T ξ ^ , d m l ξ ^ , T ξ ^ , d m l ξ ^ , T ξ ^ + d m l ξ ^ , T ξ ^ 2 , 1 + d m l ξ ^ , T ξ ^ d m l ξ ^ , T ξ ^ 1 + d m l ξ ^ , ξ ^
= max d m l ξ ^ , ξ ^ , d m l ξ ^ , ξ ^ , d m l ξ ^ , ξ ^ , d m l ξ ^ , ξ ^ , 1 + d m l ξ ^ , ξ ^ d m l ξ ^ , ξ ^ 1 + d m l ξ ^ , ξ ^ = d m l ξ ^ , ξ ^ .
Then, from (10), it follows
τ + F d m l ξ ^ , ξ ^ F d m l ξ ^ , ξ ^ ,
which is a contradiction. Hence, the assumption that d m l ξ ^ , ξ ^ > 0 is wrong. We proved claim I.
Now, we shall prove II. Suppose that T has two distinct fixed point ξ ^ and ζ ^ in X . By (I), we get d ξ ^ , ξ ^ = d m l ζ ^ , ζ ^ = 0 . Since d m l ξ ^ , ζ ^ = d m l T ξ ^ , T ζ ^ > 0 and α ξ ^ , ζ ^ 1 , according to (8), we get:
τ + F d m l T ξ ^ , T ζ ^ α ξ ^ , ζ ^ τ + F d m l T ξ ^ , T ζ ^ F M ξ ^ , ζ ^ ,
where
M ξ ^ , ζ ^ = max d m l ξ ^ , ζ ^ , d m l ξ ^ , ξ ^ , d m l ζ ^ , ζ ^ , d m l ξ ^ , ζ ^ + d m l ζ ^ , ξ ^ 2 , 1 + d m l ξ ^ , ξ ^ d m l ζ ^ , ζ ^ 1 + d m l ξ ^ , ζ ^ = max d m l ξ ^ , ζ ^ , 0 , 0 , d m l ξ ^ , ζ ^ , 1 + 0 · 0 1 + 0 = d m l ξ ^ , ζ ^ .
In other words, taking α ξ ^ , ζ ^ 1 into consideration,
τ + F d m l ξ ^ , ζ ^ F d m l ξ ^ , ζ ^
is a contradiction. Hence, the uniqueness of fixed point is proved.
In the sequel, we prove the existence of the fixed point of T .
Let ξ 0 X be such that α ξ 0 , T ξ 0 1 . Furthermore, we define the sequence ξ n in X with ξ n + 1 = T ξ n for all n N 0 . If ξ k = ξ k + 1 for some k N 0 , then by the previous, ξ k is a unique fixed point of T and the proof of the theorem is finished. Now, let us suppose that ξ n ξ n + 1 for all n N 0 . Since T W A X , α and α ξ 0 , T ξ 0 1 , we have
α ξ 1 , ξ 2 = α T ξ 0 , T T ξ 0 1 , α ξ 2 , ξ 3 = α T ξ 1 , T T ξ 1 1 .
Using this process again, we get α ξ n , ξ n + 1 1 .
Because T : X X is a triangular α , F -contraction mapping with α T ξ n 1 , T T ξ n 1 = α ξ n , ξ n + 1 1 , we have according to Lemma 1:
0 < τ + F d m l ξ n , ξ n + 1
α ξ n , ξ n + 1 τ + F d m l T ξ n 1 , T ξ n F M ξ n 1 , ξ n ,
where
M ξ n 1 , ξ n = max d m l ξ n 1 , ξ n , d m l ξ n 1 , T ξ n 1 , d m l ξ n , T ξ n , d m l ξ n 1 , T ξ n + d m l T ξ n 1 , ξ n 2 , 1 + d m l ξ n 1 , T ξ n 1 d m l ξ n , T ξ n 1 + d m l ξ n 1 , ξ n
= max d m l ξ n 1 , ξ n , d m l ξ n , ξ n + 1 , d m l ξ n 1 , ξ n + 1 + d m l ξ n , ξ n 2 , d m l ξ n , ξ n + 1
max d m l ξ n 1 , ξ n , d m l ξ n , ξ n + 1 , d m l ξ n 1 , ξ n + d m l ξ n , ξ n + 1 d m l ξ n , ξ n + d m l ξ n , ξ n 2
= max d m l ξ n 1 , ξ n , d m l ξ n , ξ n + 1 , d m l ξ n 1 , ξ n + d m l ξ n , ξ n + 1 2 max d m l ξ n 1 , ξ n , d m l ξ n , ξ n + 1 .
If max d m l ξ n 1 , ξ n , d m l ξ n , ξ n + 1 = d m l ξ n , ξ n + 1 , then a contradiction follows from
0 < τ + F d m l ξ n , ξ n + 1 F d m l ξ n , ξ n + 1 .
Thus, we conclude that max d m l ξ n 1 , ξ n , d m l ξ n , x n + 1 = d ξ n 1 , ξ n for all n N . Therefore, since α ξ n , ξ n + 1 1 , we have
τ + F d m l ξ n , ξ n + 1 < F d m l ξ n 1 , ξ n ,
where from one can conclude that d m l ξ n , ξ n + 1 < d m l ξ n 1 , ξ n for all n N . This further means that there exists lim n + d m l ξ n , ξ n + 1 = d m l ¯ 0 . If d m l ¯ > 0 , we obtain a contradiction since by ( F 1 ), it follows:
τ + F d m l ¯ + 0 F d m l ¯ + 0 ,
where F d m l ¯ + 0 = lim n + F d m l ξ n , ξ n + 1 . We use the fact that strictly increasing function F : 0 , + , + has a left and right limit in every point from 0 , + . Hence, we obtain that lim n + d m l ξ n , ξ n + 1 = 0 . Now, we prove that the sequence ξ n n N 0 is a d m l Cauchy sequence by supposing the contrary. When we put ξ = ξ m k , ζ = ξ n k in (8), we get
α ξ m k , ξ n k τ + F d m l ξ m k + 1 , ξ n k + 1 F M ξ m k , ξ n k ,
where
M ξ m k , ξ n k = max d m l ξ m k , ξ n k , d m l ξ m k , ξ m k + 1 , d m l ξ n k , ξ n k + 1 , d m l ξ m k , ξ n k + 1 + d m l ξ n k , ξ m k + 1 2 ,
1 + d m l ξ m k , ξ m k + 1 d m l ξ n k , ξ n k + 1 1 + d m l ξ m k , ξ n k max ε , 0 , 0 , ε + ε 2 , 1 + 0 · 0 1 + ε = ε .
Since α ξ m k , ξ n k 1 from the previous inequality, we get
τ + F d m l ξ m k + 1 , ξ n k + 1 < F M ξ m k , ξ n k ,
that is,
τ + F ε + 0 F ε + 0 .
We obtain the contradiction, which means that the sequence ξ n n N 0 is a 0 d m l Cauchy. This means that there exists a unique (by Remark 2) point ξ ^ X such that
d m l ξ ^ , ξ ^ = lim n + d m l ξ n , ξ ^ = lim n , m + d m l ξ n , ξ m = 0 .
Since the mapping T is d m l continuous, we get that lim n + d m l T ξ n , T ξ ^ = d m l T ξ ^ , T ξ ^ , i.e., lim n + d m l ξ n + 1 , T ξ ^ = d m l T ξ ^ , T ξ ^ . According to Remark 2, it follows that T ξ ^ = ξ ^ , that is, ξ ^ is a fixed point of T .  □
Remark 3.
The following results are immediate corollaries of Theorem 2. Indeed, replacing M ξ , ζ in (8) with one of the following sets:
max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ ,
max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d m l ξ , T ζ + d m l ζ , T ξ 2 ,
and max d m l ξ , ζ , d m l ξ , T ξ + d m l ζ , T ζ 2 , d m l ξ , T ζ + d m l ζ , T ξ 2 ,
we get that Theorem 2 also holds true.
Immediate consequences of Theorem 2 are the following new contractive conditions that compliment the ones given in [23,35].
Corollary 1.
Let X , d m l be a 0 d m l complete 0 d m l metric-like space and α i : X 2 [ 0 , + ) . Assume that a mapping T : X X is a triangular α i , F - contraction where F : 0 , + , + is the strictly increasing mapping. Suppose further that the following conditions are satisfied:
(i) 
T W A X , α i ;
(ii) 
There exists ξ 0 X such that α i ξ 0 , T ξ 0 1 , i = 1 , 6 ¯ ;
(iii) 
T is d m l continuous.
In addition, suppose that there exist τ i > 0 , i = 1 , 6 ¯ and, for all ξ , ζ X with d m l T ξ , T ζ > 0 and α i ξ , ζ 1 , i = 1 , 6 ¯ , the following inequalities hold true:
α 1 ξ , ζ τ 1 + d m l T ξ , T ζ M ξ , ζ
α 2 ξ , ζ τ 2 + exp d m l T ξ , T ζ exp M ξ , ζ
α 3 ξ , ζ τ 3 1 d m l T ξ , T ζ 1 M ξ , ζ
α 4 ξ , ζ τ 4 1 d m l T ξ , T ζ + d m l T ξ , T ζ 1 M ξ , ζ + M ξ , ζ
α 5 ξ , ζ τ 5 + 1 1 exp d m l T ξ , T ζ 1 1 exp M ξ , ζ
α 6 ξ , ζ τ 6 + 1 exp d m l T ξ , T ζ exp d m l T ξ , T ζ 1 exp M ξ , ζ exp M ξ , ζ
where M ξ , ζ is one of the following sets:
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d m l ξ , T ζ + d m l ζ , T ξ 2 , 1 + d m l ξ , T ξ d m l ζ , T ζ 1 + d m l ξ , ζ
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d m l ξ , T ζ + d m l ζ , T ξ 2
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ + d m l ζ , T ζ 2 , d m l ξ , T ζ + d m l ζ , T ξ 2
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ
M ξ , ζ = max d m l ξ , ζ = d m l ξ , ζ .
Then, in each of these cases, T has a unique fixed point in X .
Proof. 
If we put α i ξ , ζ = α ξ , ζ , i = 1 , 6 ¯ and F ι = ι , F ι = exp ι , F ι = 1 ι , F ι = 1 ι + ι , F ι = 1 1 exp ι , F ι = 1 exp ι exp ι in Theorem 2, respectively, then every of the functions ι F ι is strictly increasing on 0 , + , and the result follows according to Theorem 2.  □
Remark 4.
Putting α i ξ , ζ = 1 for all ξ , ζ X , i = 1 , 6 ¯ in the previous corollary, we get the following six new contractive conditions:
τ 1 + d m l T ξ , T ζ M ξ , ζ
τ 2 + exp d m l T ξ , T ζ exp M ξ , ζ
τ 3 1 d m l T ξ , T ζ 1 M ξ , ζ
τ 4 1 d m l T ξ , T ζ + d m l T ξ , T ζ 1 M ξ , ζ + M ξ , ζ
τ 5 + 1 1 exp d m l T ξ , T ζ 1 1 exp M ξ , ζ
τ 6 + 1 exp d m l T ξ , T ζ exp d m l T ξ , T ζ 1 exp M ξ , ζ exp M ξ , ζ
where M ξ , ζ is one of the following sets:
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d ξ , T ζ + d m l ζ , T ξ 2 , 1 + d m l ξ , T ξ d m l ζ , T ζ 1 + d m l ξ , ζ
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d m l ξ , T ζ + d m l ζ , T ξ 2
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ + d m l ζ , T ζ 2 , d m l ξ , T ζ + d m l ζ , T ξ 2
M ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ
M ξ , ζ = max d m l ξ , ζ = d m l ξ , ζ .
In every one of these cases, T has a unique fixed point in X . The result can simply be obtained by putting α i ξ , ζ = 1 , i = 1 , 6 ¯ and F ι = ι , F ι = exp ι , F ι = 1 ι , F ι = 1 ι + ι , F ι = 1 1 exp ι , F ι = 1 exp ι exp ι in Theorem 2.
In [22], Ćirić introduced one of the most generalized contractive conditions (so-called quasicontraction) in the context of metric spaces as follows:
Definition 12.
The self-mapping T : X X on metric space X , d is called quasicontraction (in the sense of Ćirić) if there exists λ [ 0 , 1 ) such that, for all ξ , ζ X holds true
d T ξ , T ζ λ max d ξ , ζ , d ξ , T ξ , d ζ , T ζ , d ξ , T ζ , d ζ , T ξ .
In [22], Ćirić proved the following result:
Theorem 3.
Each quasicontraction T on a complete metric space X , d has a unique fixed point (say) η. Moreover, for all ξ X , the sequence T n ξ n = 0 + , T 0 ξ = ξ converges to the fixed point η as n + .
Finally, we formulate the following notion and an open question:
Definition 13.
Let X , d m l be a metric-like space and α : X 2 [ 0 , + ) . A mapping T : X X is said to be a triangular α , F -contraction mapping of Ćirić type, if there exists τ > 0 such that, for all ξ , ζ X with d m l T ξ , T ζ > 0 and α ξ , ζ 1 holds true:
α ξ , ζ τ + F d m l T ξ , T ζ F N ξ , ζ ,
where
N ξ , ζ = max d m l ξ , ζ , d m l ξ , T ξ , d m l ζ , T ζ , d m l ξ , T ζ , d m l ζ , T ξ ,
F : 0 , + , + is strictly increasing function satisfying only ( F 1 ).
An open question: Prove or disprove the following claim: each triangular α , F -contraction mapping T : X X of Ćirić type defined on 0 d m l complete metric-like space X , d has a unique fixed point.

Author Contributions

Conceptualization, J.V. and S.R.; methodology, J.V., S.R., Z.D.M., and S.M.; formal analysis, Z.D.M. and S.M.; investigation, J.V., S.R., and Z.D.M.; data curation, S.R. and Z.D.M.; supervision, Z.D.M., J.V., S.R., and S.M.; project administration, S.R. and S.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for a α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
  2. Karapinar, E.; Kumam, P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef] [Green Version]
  3. Sintunavarat, W. Nonlinear integral equations with new admissibility types in b-metric spaces. Fixed Point Theory Appl. 2016, 2016, 18. [Google Scholar] [CrossRef]
  4. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. Pap. Ed. 1994, 728, 183–197. [Google Scholar] [CrossRef]
  5. Fabiano, N.; Mirković, D.; Paunović, L.; Radenović, S. On F -contraction of Jungck-Ćirić-Wardowski-type mappings in metric spaces. Cogent Math. Stat. 2020, 7, 1792699. [Google Scholar] [CrossRef]
  6. Fabiano, N.; Nikolić, N.; Fadail, Z.M.; Paunović, L.; Radenović, S. New fixed point results on αLψ-rational contraction mappings in metric-like spaces. Filomat. in press.
  7. Fabiano, N.; Došenović, T.; Rakić, D.; Radenović, S. Some new results on (s,q)-Dass-Gupta-Juggi type contractive mappings in b-metric-like spaces. Filomat. in press.
  8. Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
  9. Qawaqueh, H.; Noorami, M.S.; Shatanawi, W. Fixed point results for Geraghty type generalized F -contraction for weak α-admissible mappings in metric-like spaces. Eur. J. Pure Appl. Math. 2018, 11, 702–716. [Google Scholar] [CrossRef]
  10. Rajić, V.Ć.; Radenović, S.; Chauhan, S. Common fixed point of generalized weakly contractive maps in partial metric spaces. Acta Math. Sci. 2014, 34, 1345–1356. [Google Scholar] [CrossRef]
  11. Shukla, S.; Radenović, S.; Rajić, V.Ć. Some common fixed point theorems in 0-σ-complete metric-like spaces. Vietnam J. Math. 2013, 41, 341–352. [Google Scholar] [CrossRef] [Green Version]
  12. Harandi, A.A. Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 2012, 204. [Google Scholar] [CrossRef] [Green Version]
  13. Dey, L.K.; Kumam, P.; Senapati, T. Fixed point results concerning α- F -contraction mappings in metric spaces. J. Appl. Gen. Topol. 2019, 20, 81–95. [Google Scholar] [CrossRef] [Green Version]
  14. Vujaković, J.; Radenović, S. On some F -contraction of Piri-Kumam-Dung type mappings in metric spaces. Vojnoteh. Cki Glas. Tech. Cour. 2020, 68, 697–714. [Google Scholar] [CrossRef]
  15. Vujaković, J.; Mitrović, S.; Pavlović, M.; Radenović, S. On recent results concerning F -contraction in generalized metric spaces. Mathematics 2020, 8, 767. [Google Scholar] [CrossRef]
  16. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric space. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
  17. Wardowski, D.; Van Dung, N. Fixed point of F -weak contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
  18. Wardowski, D. Solving existence problems via F -contractions. Proc. Amer. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
  19. Abbas, M.; Jungck, G. Common fixed point results for non-commuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 2008, 341, 416–420. [Google Scholar] [CrossRef] [Green Version]
  20. Aleksić, S.; Mitrović, Z.D.; Radenović, S. Picard sequences in b-metric spaces. Fixed Point Theory 2020, 21, 35–46. [Google Scholar] [CrossRef]
  21. Banach, S. Sur les opérations dans les ensembles abstrait et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  22. Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
  23. Collaco, P.; Silva, J.C. A complete comparison of 23 contraction conditions. Nonlinear Anal. TMA 1997, 30, 471–476. [Google Scholar] [CrossRef]
  24. Consentino, M.; Vetro, P. Fixed point result for F -contractive mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
  25. Jungck, G. Commuting maps and fixed points. Amer. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
  26. De La Sen, M.; Nikolić, N.; Došenović, T.; Pavlović, M.; Radenović, S. Some results on (s-q)-graphic contraction mappings in b-metric spaces. Mathematics 2019, 7, 1190. [Google Scholar] [CrossRef] [Green Version]
  27. Karapinar, E.; Salimi, P. Dislocated metric spaces to metric spaces with some fixed point theorems. Fixed Point Theory Appl. 2013, 2013, 222. [Google Scholar] [CrossRef] [Green Version]
  28. Karapinar, E.; Fulga, A.; Agarwal, R. A survey: F -contractions with related fixed point results. J. Fixed Point Theory Appl. 2020, 22, 69. [Google Scholar] [CrossRef]
  29. Khamsi, M.A.; Kirk, W.A. An introduction to Metric Spaces and Fixed Point Theory; John Willey and Sons. INC.: Hoboken, NJ, USA, 1996. [Google Scholar]
  30. Mitrović, Z.D. A note on the result of Suzuki, Miculesku and Mihail. J. Fixed Point Theory Appl. 2019, 21, 24. [Google Scholar] [CrossRef]
  31. Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 21. [Google Scholar] [CrossRef]
  32. Piri, H.; Kumam, P. Some fixd point theorems concerning F -contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 210. [Google Scholar] [CrossRef] [Green Version]
  33. Popescu, O.; Stan, G. Two fixed point theorems concerning F -contraction in complete metric spaces. Symmetry 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
  34. Radenović, S. Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension. Allahabad Math. Soc. 2016, 31, 39–55. [Google Scholar]
  35. Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 1997, 226, 257–290. [Google Scholar] [CrossRef]
  36. Salimi, P.; Hussain, N.; Shukla, S.; Fathollahi, S.; Radenović, S. Fixed point results for cyclic α-ψϕ-contractions with applications to integral equations. J. Comput. Appl. Math. 2015, 290, 445–458. [Google Scholar] [CrossRef]
  37. Mebawondu, A.A.; Mewomo, O.T. Some fixed point results for TAC-Suzuki contractive mappings. Commun. Korean Math. Soc. 2019, 34, 1201–1222. [Google Scholar]

Share and Cite

MDPI and ACS Style

Vujaković, J.; Mitrović, S.; Mitrović, Z.D.; Radenović, S. On \({\mathcal{F}}\)-Contractions for Weak α-Admissible Mappings in Metric-Like Spaces. Mathematics 2020, 8, 1629. https://doi.org/10.3390/math8091629

AMA Style

Vujaković J, Mitrović S, Mitrović ZD, Radenović S. On \({\mathcal{F}}\)-Contractions for Weak α-Admissible Mappings in Metric-Like Spaces. Mathematics. 2020; 8(9):1629. https://doi.org/10.3390/math8091629

Chicago/Turabian Style

Vujaković, Jelena, Slobodanka Mitrović, Zoran D. Mitrović, and Stojan Radenović. 2020. "On \({\mathcal{F}}\)-Contractions for Weak α-Admissible Mappings in Metric-Like Spaces" Mathematics 8, no. 9: 1629. https://doi.org/10.3390/math8091629

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop