Solving Integro-Differential Boundary Value Problems Using Sinc-Derivative Collocation
Abstract
:1. Introduction
2. Sinc Preliminaries
3. The Derivative Interpolation Method for IDBVPs
3.1. Evaluating the Integral Terms
3.2. Discretizing the IDBVP
4. Numerical Illustrations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cushing, J.M. Integrodifferential Equations and Delay Models in Population Dynamics; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Gushing, J.M. Volterra Integrodifferential Equations in Population Dynamics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Cushing, J.M. Periodic Time-Dependant Predator-Prey Systems. SIAM J. Appl. Math. 1977, 32, 82–95. [Google Scholar] [CrossRef]
- Mogilner, A.; Edelstein-Keshet, L. A non-local model for a swarm. J. Math. Biol. 1999, 38, 534–570. [Google Scholar] [CrossRef]
- Kraemer, M.A.; Kalachev, L.V. Analysis of a Class of Nonlinear Integro-Differential Equations Arising in a Forestry Application. Q. Appl. Math. 2003, 61, 513–535. [Google Scholar] [CrossRef] [Green Version]
- Agranovicha, G.; Litsynb, E.; Slavova, A. Dynamical behavior of integro-differential boundary value problems arising in nano-structures via Cellular Nanoscale Network approach. J. Comput. Appl. Math. 2019, 352, 62–71. [Google Scholar] [CrossRef]
- Calvo-Garrido, M.C.; Ehrhardt, M.; Carlos, V. Jump-diffusion models with two stochastic factors for pricing swing options in electricity markets with partial-integro differential equations. Appl. Numer. Math. 2019, 139, 77–92. [Google Scholar] [CrossRef]
- Shavlakadze, N. The effective solution of two-dimensional integro-differential equations and their applications in the theory of viscoelasticity. ZAMM-J. Appl. Math. Mech. 2015, 95, 1548–1557. [Google Scholar] [CrossRef]
- French, D.A. Identification of a free energy functional in an integro-differential equation model for neuronal network activity. Appl. Math. Lett. 2004, 17, 1047–1051. [Google Scholar] [CrossRef] [Green Version]
- Athavale, P.; Tadmor, E. Novel integro-differential equations in image processing and its applications. In Computational Imaging VIII, Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 17–21 January 2010; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7533. [Google Scholar]
- Poorooshasb, H.B.; Alamgir, M.; Miura, N. Application of an integro-differential equation to the analysis of geotechnical problems. Struct. Eng. Mech. 1996, 4, 227–242. [Google Scholar] [CrossRef]
- Pouchol, C.; Clairambault, J.; Lorz, A.; Trélat, E. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 2015, 116, 268–308. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, N. On an integro-differential model for pest control in a heterogeneous environment. J. Math. Biol. 2015, 70, 1177–1206. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M.; Shawagfeh, N. Solving Fredholm integro–differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 2013, 219, 8938–8948. [Google Scholar]
- Lakestani, M.; Razzaghi, M.; Dehghan, M. Semiorthogonal spline wavelets approximation for Fredholm integro-differential equations. Math. Probl. Eng. 2006, 2006, 1–12. [Google Scholar] [CrossRef]
- Dehghan, M.; Saadatmandi, A. Chebyshev finite difference method for Fredholm integro-differential equation. Int. J. Comput. Math. 2008, 85, 123–130. [Google Scholar] [CrossRef]
- Sakran, M.R.A. Numerical solutions of integral and integro-differential equations using Chebyshev polynomials of the third kind. Appl. Math. Comput. 2019, 351, 66–82. [Google Scholar]
- Yalçinbaş, S.; Sezer, M.; Sorkun, H.H. Legendre polynomial solutions of high-order linear Fredholm integro-differential equations. Appl. Math. Comput. 2009, 210, 334–349. [Google Scholar]
- Conte, D.; Cardone, A. Multistep collocation methods for Volterra integro-differential equations. Appl. Math. Comput. 2013, 221, 770–785. [Google Scholar]
- Corless, R.M.; Zhao, J. Compact finite difference method for integro-differential equations. Appl. Math. Comput. 2006, 177, 271–288. [Google Scholar]
- Rahimi-Ardabili, M.; Shahmorad, S.; Pour-Mahmoud, J. Numerical solution of the system of Fredholm integro-differential equations by the Tau method. Appl. Math. Comput. 2005, 168, 465–478. [Google Scholar]
- Hosseini, S.; Shahmorad, S. Numerical solution of a class of integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 2003, 136, 559–570. [Google Scholar]
- El-Sayed, S.M.; Abdel-Aziz, M.R. A comparison of Adomian’s decomposition method and wavelet-Galerkin method for solving integro-differential equations. Appl. Math. Comput. 2003, 136, 151–159. [Google Scholar]
- Yeganeh, S.; Ordokhani, Y.; Saadatmandi, A. A Sinc-Collocation Method for Second Order Boundary Value Problems of Nonlinear Integro-Differential Equation. J. Inf. Comput. Sci. 2012, 7, 151–160. [Google Scholar]
- Revelli, R.; Ridolfi, L. Sinc collocation-interpolation method for the simulation of nonlinear waves. Comput. Math. Appl. 2003, 46, 1443–1453. [Google Scholar]
- Abdella, K.; Yu, X.; Kucuk, I. Application of the Sinc method to a dynamic elasto-plastic problem. J. Comput. Appl. Math. 2009, 223, 626–645. [Google Scholar] [CrossRef] [Green Version]
- Parand, K.; Dehghan, M.; Pirkhedri, A. Sinc-collocation method for solving the Blasius equation. Phys. Lett. A 2009, 373, 4060–4065. [Google Scholar] [CrossRef]
- Parand, K.; Pirkhedri, A. Sinc-Collocation method for solving astrophysics equations. New Astron. 2010, 15, 533–537. [Google Scholar] [CrossRef]
- Al-Khaled, K. Numerical approximations for population growth models. Appl. Math. Comput. 2005, 160, 865–873. [Google Scholar]
- Al-Khaled, K. Numerical study of Fisher’s reaction-diffusion equation by the Sinc collocation method. J. Comput. Appl. Math. 2001, 137, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Winnter, D.F.; Bowers, K.; Lund, J. Wind-Driven Currents in a Sea with Variable Eddy Viscosity Calculated via a Sinc-Galerkin Technique. Int. J. Numer. Methods Fluids 2000, 33, 1041–1073. [Google Scholar] [CrossRef]
- Koonprasert, S.; Bowers, K.L. Block matrix Sinc-Galerkin solution of the wind-driven current problem. Appl. Math. Comput. 2004, 155, 607–635. [Google Scholar]
- Stenger, F. Numerical Methods Based on Sinc and Analytic Functions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 20. [Google Scholar]
- Lund, J.; Bowers, K.L. Sinc Methods for Quadrature and Differential Equations; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Sugihara, M.; Matsuo, T. Recent developments of the Sinc numerical methods. J. Comput. Appl. Math. 2004, 164, 673–689. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, M. Near optimality of the sinc approximation. Math. Comput. 2003, 72, 767–786. [Google Scholar] [CrossRef] [Green Version]
- Abdella, K. Solving differential equations using Sinc-collocation methods with derivative interpolations. J. Comput. Methods Sci. Eng. 2015, 15, 305–315. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D. Numerical Analysis; Brooks/Cole: San Francisco, CA, USA, 2001. [Google Scholar]
- Mohseniahouei, Y.; Abdella, K.; Pollanen, M. The application of the Sinc-Collocation approach based on derivative interpolation in numerical oceanography. J. Comput. Sci. 2015, 7, 13–25. [Google Scholar] [CrossRef]
- Abdella, K.; Ross, G.; Mohseniahouei, Y. Solutions to the Blasius and Skiadis problems via sinc-collocation approach. Dyn. Syst. Appl. 2017, 26, 105–120. [Google Scholar]
- Abdella, K.; Trivedi, J. Solving Nonlinear Multi-point boundary Value Problems Using Sinc-derivative interpolation. Mathematics 2020, in press. [Google Scholar]
- Sugihara, M. Double exponential transformation in the Sinc-collocation method. J. Comput. Appl. Math. 2002, 149, 7239–7250. [Google Scholar] [CrossRef] [Green Version]
- Okayama, T.; Matsuo, T.; Sugihara, M. Improvement of a Sinc-collocation method for Fredholm integral equations of the second kind. BIT Numer. Math. 2011, 51, 339–366. [Google Scholar] [CrossRef]
- Rashidinia, J.; Zarebnia, M. Numerical solution of linear integral equations by using sinc-collocation method. Appl. Math. Comput. 2005, 168, 806–822. [Google Scholar]
- Yulana, W.; Chaolu, T.; Jing, P. New algorithm for second-order boundary value problems of integro-differential equation. J. Comput. Appl. Math. 2009, 229, 1–6. [Google Scholar] [CrossRef] [Green Version]
- El-Ajou, A.; Abu Arqub, O.; Momani, S. Homotopy Analysis Method for Second-Order Boundary Value Problems of Integrodifferential Equations. J. Comput. Appl. Math. 2012, 2012, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations; Blackie & Son Limited: London, UK, 1930. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdella, K.; Ross, G. Solving Integro-Differential Boundary Value Problems Using Sinc-Derivative Collocation. Mathematics 2020, 8, 1637. https://doi.org/10.3390/math8091637
Abdella K, Ross G. Solving Integro-Differential Boundary Value Problems Using Sinc-Derivative Collocation. Mathematics. 2020; 8(9):1637. https://doi.org/10.3390/math8091637
Chicago/Turabian StyleAbdella, Kenzu, and Glen Ross. 2020. "Solving Integro-Differential Boundary Value Problems Using Sinc-Derivative Collocation" Mathematics 8, no. 9: 1637. https://doi.org/10.3390/math8091637