Long Text QA Matching Model Based on BiGRU–DAttention–DSSM
Abstract
:1. Introduction
2. Related Work
3. Approaches
3.1. Modified DSSM for QA Matching
3.2. BiGRU-DAttention-DSSM
4. Experiments
4.1. Data Pre-Processing
4.2. Assessment Method
4.3. Experiment Details
4.4. Result and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, P. Research on Construction of Automatic Question Answering System Based on Neural Network Semantic Matching; Nanjing University of Posts and Telecommunications: Nanjing, China, 2020. (In Chinese) [Google Scholar]
- Huanjong, Z.; Yujian, L.; Yixin, Z. A New Method for Text Similarity Computing. Comput. Sci. 2002, 29, 92–93. (In Chinese) [Google Scholar]
- Hou-Feng, X.G.W. The Development of Topic Models in Natural Language Processing. Chin. J. Comput. 2011, 8, 9. (In Chinese) [Google Scholar]
- Wang, Z.Z.; He, M.; Du, Y.P. Text Similarity Computing Based on Topic Model LDA. Comput. Sci. 2013, 40, 229–232. [Google Scholar]
- Qi, L.; Zhang, Y.; Liu, T. SCIR-QA at SemEval-2017 Task 3: CNN Model Based on Similar and Dissimilar Information between Keywords for Question Similarity. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, BC, Canada, 3–4 August 2017; pp. 305–309. [Google Scholar]
- Liu, T.C.; Wu, Y.H.; Lee, H.Y. Query-based Attention CNN for Text Similarity Map. arXiv 2017, arXiv:1709.05036. [Google Scholar]
- Zhang, G.; Fan, X.; Jin, C.; Wu, M. Open-Domain Document-Based Automatic QA Models Based on CNN and Attention Mechanism. In Proceedings of the 2019 IEEE International Conference on Big Knowledge (ICBK), Beijing, China, 10–11 November 2019; pp. 326–332. [Google Scholar]
- Hou, Y.; Xiang, Y.; Tang, B.; Chen, Q.; Wang, X.; Zhu, F. Identifying High Quality Document–Summary Pairs through Text Matching. Information 2017, 8, 64. [Google Scholar]
- Xiong, C.Z.; Su, M. IARNN-Based Semantic-Containing D-Level Embedding Bi-LSTM for Question-and-Answer Matching. Comput. Intell. Neurosci. March 2019, 9, 6074840. [Google Scholar] [CrossRef] [PubMed]
- Bing, B.; Weston, J.; Grangier, D.; Collobert, B.; Sadamasa, K.; Qi, Y.; Chapelle, O.; Weinberger, K. Supervised semantic indexing. In Proceedings of the ACM Conference on Information & Knowledge Management; ACM: Hong Kong, China, 2009. [Google Scholar]
- Wei, W.; Lu, Z.; Hang, L. Learning Bilinear Model for Matching Queries and Documents. J. Mach. Learn. Res. 2013, 14, 2519–2548. [Google Scholar]
- Gao, J.; Toutanova, K.; Yih, W.T. Clickthrough-Based Latent Semantic Models for Web Search. In SIGIR 2011, Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 25–29 July 2011; ACM: New York, NY, USA, 2011. [Google Scholar]
- Qiu, X.; Huang, X. Convolutional neural tensor network architecture for community-based question answering. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Yang, R.; Zhang, J.; Gao, X.; Ji, F.; Chen, H. Simple and effective text matching with richer alignment features. arXiv 2019, arXiv:1908.00300. [Google Scholar]
- Peng, S.; Cui, H.; Xie, N.; Li, S.; Zhang, J.; Li, X. Enhanced-RCNN: An Efficient Method for Learning Sentence Similarity. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 2500–2506. [Google Scholar]
- Liu, B.; Niu, D.; Wei, H.; Lin, J.; He, Y.; Lai, K.; Xu, Y. Matching Article Pairs with Graphical Decomposition and Convolutions. arXiv 2018, arXiv:1802.07459. [Google Scholar]
- Minwei, F.; Bing, X.; Michael, R. Glass Applying Deep Learning to Answer Selection: A Study and an Open Task. arXiv 2015, arXiv:1508.01585. [Google Scholar]
- Chen, Q.; Zhu, X.; Ling, Z.; Wei, S.; Jiang, H.; Inkpen, D. Enhanced LSTM for Natural Language Inference. arXiv 2016, arXiv:1609.06038. [Google Scholar]
- Wang, Z.; Hamza, W.; Florian, R. Bilateral multi-perspective matching for natural language sentences. In Proceedings of the IJCAI, Melbourne, Australia, 15–24 August 2017. [Google Scholar]
- Huang, P.S.; He, X.; Gao, J.; Deng, L.; Acero, A.; Heck, L. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management; ACM: New York, NY, USA, 2013. [Google Scholar]
- Shen, Y.; He, X.; Gao, J.; Deng, L.; Mesnil, G. A latent semantic model with convolutional-pooling structure for information retrieval. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management; Shanghai, China, ACM: New York, NY, USA, 2014. [Google Scholar]
- Palangi, H.; Deng, L.; Shen, Y.; Gao, J.; He, X.; Chen, J.; Song, X.; Ward, R. Semantic modelling with long-short-term memory for information retrieval. arXiv 2014, arXiv:1412.6629 2014. [Google Scholar]
- Jiwei, L.; Minh-Thang, L.; Dan, J. A Hierarchical Neural Autoencoder for Paragraphs and Documents. arXiv 2015, arXiv:1506.01057. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, T.; Jia, Z.; Yin, C. BiGRU: New Method of Chinese Text Sentiment Analysis. J. Front. Comput. Sci. Technol. 2019, 13, 973–981. [Google Scholar] [CrossRef]
- Wang, N.; Li, S.L.; Liu, T.L.; Zhao, W. Attention-Based BiGRU on Tendency Analysis of Judgment Results. Comput. Syst. Appl. 2019, 28, 191–195. (In Chinese) [Google Scholar]
ID | Architecture on QA Matching | MRR | |
---|---|---|---|
Training Data | Test Data | ||
1 | Model structure in essay [9] | 0.0003 | 0.00025 |
2 | Attention-DSSM | 0.499 | 0.449 |
3 | BiRNN–Attention–DSSM | 0.96315 | 0.93019 |
4 | BiRNN–DAttention–DSSM | 0.96436 | 0.93250 |
5 | BiGRU–Attention–DSSM | 0.96447 | 0.93285 |
6 | BiGRU–DAttention–DSSM | 0.96450 | 0.93285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Xu, T. Long Text QA Matching Model Based on BiGRU–DAttention–DSSM. Mathematics 2021, 9, 1129. https://doi.org/10.3390/math9101129
Chen S, Xu T. Long Text QA Matching Model Based on BiGRU–DAttention–DSSM. Mathematics. 2021; 9(10):1129. https://doi.org/10.3390/math9101129
Chicago/Turabian StyleChen, Shihong, and Tianjiao Xu. 2021. "Long Text QA Matching Model Based on BiGRU–DAttention–DSSM" Mathematics 9, no. 10: 1129. https://doi.org/10.3390/math9101129
APA StyleChen, S., & Xu, T. (2021). Long Text QA Matching Model Based on BiGRU–DAttention–DSSM. Mathematics, 9(10), 1129. https://doi.org/10.3390/math9101129