On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions †
Abstract
:1. Introduction
2. Background Materials
3. Existence Theory
- H2:
- For every and , there are , such thatSimilarly, for every and , there are , such thatIn addition, it is assumed thatThen, the system (1) has at least one solution.
4. Stability Results
4.1. Method (I)
- H3:
- Let functions be nondecreasing. Then, there are , such that for every the inequalities
4.2. Method (II)
5. Example
6. Conclusions
- and , then we get fourth-order system with anti-periodic boundary conditions.
- and , then we get fourth-order system with initial conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equation. In North-Holl and Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Vintagre, B.M.; Podlybni, I.; Hernandez, A.; Feliu, V. Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 2000, 3, 231–248. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
- Rihan, F.A. Numerical Modeling of Fractional Order Biological Systems. Abs. Appl. Anal. 2013. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Khan, A.; Syam, M.I.; Zada, A.; Khan, H. Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives. Eur. Phys. J. Plus 2018, 133, 264. [Google Scholar] [CrossRef]
- Riaz, U.; Zada, A.; Ali, Z.; Cui, Y.; Xu, J. Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv. Differ. Eq. 2019, 226, 1–27. [Google Scholar] [CrossRef]
- Rizwan, R.; Zada, A.; Wang, X. Stability analysis of non linear implicit fractional Langevin equation with noninstantaneous impulses. Adv. Differ. Eq. 2019, 2019, 85. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S. Stability Analysis of multi-point boundary value problem for sequential fractional differential equations with noninstantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 763–774. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Fang, J. The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 2004, 150, 611–621. [Google Scholar] [CrossRef]
- Chen, Y.; An, H. Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 2008, 200, 87–95. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Ahmad, B.; Alsaedi, A. Fractional-order differential equations with anti-periodic boundary conditions: A survey. Bound. Value Probl. 2017, 2017, 173. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K. Fractional differential inclusions with fractional separated boundary conditions. Fract. Calc. Appl. Anal. 2012, 15, 362–382. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71, 2391–2396. [Google Scholar] [CrossRef]
- Goodrich, C. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 2011, 61, 191–202. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, J.; Zada, A.; Shah, S.O.; Xu, J. Analysis of coupled system of implicit fractional differential equations involving Katugampola-Caputo fractional derivative. Complexity 2020. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Zada, A.; Wang, X. Existence, uniqueness and stability of implicit switched coupled fractional differential equations of Ψ-hilfer type. Int. J. Nonlinear Sci. Numer. Simul. 2019, 21, 327–337. [Google Scholar] [CrossRef]
- Riaz, U.; Zada, A.; Ali, Z.; Cui, Y.; Xu, J. Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives. Math. Probl. Eng. 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S.; Li, Y. Ulam–type stability for a class of implicit fractional differential equations with non–instantaneous integral impulses and boundary condition. Adv. Differ. Eq. 2017, 2017, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Zada, A.; Ali, W.; Park, C. Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall–Bellman–Bihari’s type. Appl. Math. Comput. 2019, 350, 60–65. [Google Scholar] [CrossRef]
- Zada, A.; Mashal, A. Stability analysis of nth order nonlinear impulsive differential equations in Quasi–Banach space. Numer. Func. Anal. Opt. 2019, 41, 294–321. [Google Scholar] [CrossRef]
- Zhou, H.; Alzabut, J.; Yang, L. On fractional Langevin differential equations with anti-periodic boundary conditions. Eur. Phys. J. Spec. Top. 2017, 226, 3577–3590. [Google Scholar] [CrossRef]
- Zada, A.; Riaz, U.; Khan, F. Hyers–Ulam stability of impulsive integral equations. Boll. Unione Mat. Ital. 2019, 12, 453–467. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Alqifiary, Q.; Jung, S. Laplace transform and generalized Hyers–Ulam stability of linear differential equations. Electron. J. Differ. Eq. 2014, 2014, 1–11. [Google Scholar]
- Rezaei, H.; Jung, S.; Rassias, T. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Wang, C.; Xu, T. Hyers–Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl. Math. 2015, 60, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Chen, W. Laplace transform mathod for the Ulam stability of linear fractional differential equations with constant coefficients. Mediterr. J. Math. 2017, 60, 1–25. [Google Scholar]
- Liu, K.; Feçkan, M.; O’Regan, D.; Wang, J. Hyers–Ulam stability and existence of solutions for differential equations with Caputo–Fabrizio fractional derivative. Mathematics 2019, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D. Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel. Chaos. Solitons Fractals 2020, 132, 1–8. [Google Scholar] [CrossRef]
- Fu, Y.; Yao, H. The solution of nonlinear fourth-order differential equation with integral boundary conditions. J. Funct. Spaces 2014, 2014, 8. [Google Scholar] [CrossRef]
- Malek, A.; Beidokhti, R.S. Numerical solution for high order differential equations using a hybrid neural net-work-optimization method. Appl. Math. Comput. 2006, 183, 260–271. [Google Scholar] [CrossRef]
- Craig, R.R.; Kurdila, A.J. Fundamentals of Structural Dynamics; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Krajcinovic, D. Sandwich beam analysis. J. Appl. Mech. 1972, 39, 773–778. [Google Scholar] [CrossRef]
- Aftabizadeh, A.R. Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 1986, 116, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Peno, M.A.D.; Manasevich, R.F. Existence for fourth-order boundary value problem under a two parameter nonresonance condition. Proc. Am. Math. Soc. 1991, 112, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Usmani, A. A uniqueness theorem for boundary value problem. Proc. Am. Math. Soc. 1979, 77, 327–335. [Google Scholar] [CrossRef]
- Yao, Q. Existence of solutions and positive solutions to a fourth-order two-point BVP with second derivative. J. Zhejiang Univ. SCI 2004, 5, 353–357. [Google Scholar] [CrossRef]
- Chen, H.L. Antiperiodic wavelets. J. Comput. Math. 1996, 14, 32–39. [Google Scholar]
- Shao, J. Anti-periodic solutions for shunting inhibitory cellular neural networks with timevarying delays. Phys. Lett. A 2008, 372, 5011–5016. [Google Scholar] [CrossRef]
- Shah, K.; Tunç, C. Existence theory and stability analysis to a system of boundary value problem. J. Taibah Univ. Sci. 2017, 11, 1330–1342. [Google Scholar] [CrossRef] [Green Version]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, U.; Zada, A.; Ali, Z.; Popa, I.-L.; Rezapour, S.; Etemad, S. On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions. Mathematics 2021, 9, 1205. https://doi.org/10.3390/math9111205
Riaz U, Zada A, Ali Z, Popa I-L, Rezapour S, Etemad S. On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions. Mathematics. 2021; 9(11):1205. https://doi.org/10.3390/math9111205
Chicago/Turabian StyleRiaz, Usman, Akbar Zada, Zeeshan Ali, Ioan-Lucian Popa, Shahram Rezapour, and Sina Etemad. 2021. "On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions" Mathematics 9, no. 11: 1205. https://doi.org/10.3390/math9111205
APA StyleRiaz, U., Zada, A., Ali, Z., Popa, I. -L., Rezapour, S., & Etemad, S. (2021). On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions. Mathematics, 9(11), 1205. https://doi.org/10.3390/math9111205