E-Bayesian Estimation of Reliability Characteristics of a Weibull Distribution with Applications
Abstract
:1. Introduction
2. Model and Estimations for
- [1]
- If and then the aforementioned censoring is the type-II censoring (see Okasha [12]).
- [2]
- If and then the aforementioned censored sample corresponds to the complete sample.
3. E-Bayesian Estimation for
3.1. E-Bayesian Estimation for
3.2. E-Bayesian Estimation for
3.3. E-Bayesian Estimation for
3.4. E-Bayesian Estimation for
4. Properties of E-Bayesian Estimations of
- (i)
- and
- (ii)
- .
- (i)
- and
- (ii)
- .
- (i)
- and
- (ii)
5. Simulation Study and Comparisons
- Sch 1: ,
- Sch 2: ,
- Sch 3: ;
Simulation Study
- A progressive type-II sample with n test items and s observed failure times is generated from WEI() by implementing the progressive type-II censoring , using a MATLAB program that was developed by the authors.
- The MLE can be obtained by Equation (5), and the MLEs of , and can be obtained by plugging into , and , respectively.
- Repeat Step 1 to Step 7 10,000 times and 10,000 estimates from Step 2 to Step 7 are respectively calculated.
- (1)
- The respective average estimate (AVE) and mean square error (MSE) from 10,000 estimates of each different estimator decrease as n increases.
- (2)
- The AVE and MSE of each different estimator decrease as a increases.
- (3)
- The AVE and MSE of each different estimator in Prior II are less than Prior I.
- (4)
- The E-Bayesian estimators of the scale parameter, , the reliability, R, failure rate and h functions perform better than Bayesian estimators in terms of minimum MSE and AVE.
- (5)
- The E-Bayesian estimators of , R and h have the minimum MSE among all other estimators.
- (6)
- The E-Bayesian estimators of , R and h using prior distribution perform better than other estimators in terms of minimum MSE.
- (7)
- The E-Bayesian estimators of , R and h based on the SEL loss function under prior distribution have the minimum MSE compared with all other estimators.
- (8)
- All estimators for the median lifetime are very competitive in terms of MSE under each combination of the simulation inputs.
6. Applications to Real Data
6.1. Example 1
6.2. Example 2
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Abernethy, R.B. The New Weibull Handbook, 5th ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Zhang, L.F.; Xie, M.; Tang, L.C. On weighted least square estimation for the parameters of Weibull distribution. In Recent Advances in Reliability and Quality Design; Hoang, P., Ed.; Springer: London, UK, 2008; pp. 57–84. [Google Scholar]
- Al Omari, M.A.; Ibrahim, N.A. Bayesian survival estimation for Weibull distribution with censored data. J. Appl. Sci. 2011, 11, 393–396. [Google Scholar]
- Wu, S.J. Estimation of the two parameter Weibull distribution with progressive censoring. J. Appl. Stat. 2008, 35, 1139–1150. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, M. On the Upper Truncated Weibull Distribution and Its Reliability Implications. Reliab. Syst. Saf. 2011, 96, 194–200. [Google Scholar] [CrossRef]
- Ahmed, E.A. Bayesian estimation based on progressive Type-II censoring from two-parameter Weibull model: An Markov chain Monte Carlo approach. J. Appl. Stat. 2014, 4, 752–768. [Google Scholar] [CrossRef]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley and Sons: New York, NY, USA, 2004. [Google Scholar]
- Han, M. The structure of hierarchical prior distribution and its applications. Chin. Oper. Res. Manag. Sci. 1997, 6, 31–40. [Google Scholar]
- Han, M. E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Appl. Math. Model. 2009, 33, 1915–1922. [Google Scholar] [CrossRef]
- Jaheen, Z.F.; Okasha, H.M. E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Appl. Math. Model. 2011, 35, 4730–4737. [Google Scholar] [CrossRef]
- Okasha, H.M. E-Bayesian Estimation of System Reliability with Weibull Distribution Based on Type-2 Censoring. J. Adv. Res. Sci. Comput. 2012, 4, 33–45. [Google Scholar]
- Okasha, H.M. E-Bayesian estimation for the Lomax distribution based on type-II censored data. JOEMS 2014, 22, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Okasha, H.M.; Wang, J. E-Bayesian estimation for the geometric model based on record statistics. Appl. Math. Model. 2016, 40, 658–670. [Google Scholar] [CrossRef]
- Okasha, H.M.; Wang, C.; Wang, J. E-Bayesian Prediction for the Burr XII Model Based on Type-II Censored Data with Two Samples. Adv. Theor. Phys. 2020. [Google Scholar] [CrossRef]
- Okasha, H.M. Estimation for the Exponential Model Based on Record Statistic. J. Stat. Theory Appl. 2019, 18, 236–243. [Google Scholar]
- Okasha, H.M.; Mustafa, A. E-Bayesian Estimation for the Weibull Distribution under Adaptive Type-I Progressive Hybrid Censored Competing Risks Data. Entropy 2020, 22, 903. [Google Scholar] [CrossRef] [PubMed]
- Algarni, A.; Almarashi, H.M.; Okasha, H.M.; Tony, N.H.K. E-Bayesian Estimation of Chen Distribution Based on Type-I Censoring Scheme. Entropy 2020, 22, 636. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.; Okasha, H.; Albassam, M. E-Bayesian estimation and associated properties of simple step–stress model for exponential distribution based on type-II censoring. Qual. Reliab. Eng. Int. 2021, 37, 997–1016. [Google Scholar] [CrossRef]
- Lee, E.T.; Wang, J. Statistical Methods for Survival Data Analysis, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Padgett, W.J.; Spurrier, J.D. Shewhart-type Charts for Percentiles of Strength Distributions. J. Qual. Technol. 1990, 22, 283–288. [Google Scholar] [CrossRef]
- Canavos, G.C.; Tsokos, C.P. Bayesian Estimation of Life Parameters in the Weibull Distribution. Oper. Res. 1973, 21, 755–763. [Google Scholar] [CrossRef]
- Panahi, H.; Asadi, S. Estimation of the Weibull Distribution Based on Type-II Censored Samples. Appl. Math. Sci. 2011, 5, 2549–2558. [Google Scholar]
- Singh, S.K.; Singh, U.; Sharma, V.K. Bayesian Estimation and Prediction for Flexible Weibull Model under Type-II Censoring Scheme. J. Probab. Stat. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products (Corrected and Enlarged Edition); Academic Press: San Diego, CA, USA, 1980; pp. 96–99. [Google Scholar]
- Aarset, M.V. How to identify bathtub hazard rate. IEEE Trans. Reliab. 1987, 36, 106–108. [Google Scholar] [CrossRef]
(n, s) | Scheme | Par | MLE | Prior I | Prior II | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | BS | EBS1 | EBS2 | EBS3 | ||||
(20, 5) | 1 | 1.2464 | 1.2722 | 1.1292 | 1.1978 | 1.0605 | 1.1860 | 1.1145 | 1.1823 | 1.0468 | |
0.5507 | 0.4071 | 0.2579 | 0.3523 | 0.1831 | 0.3239 | 0.2481 | 0.3383 | 0.1770 | |||
R | 0.3898 | 0.3999 | 0.4398 | 0.4238 | 0.4558 | 0.4239 | 0.4438 | 0.4278 | 0.4598 | ||
0.0249 | 0.0176 | 0.0156 | 0.0169 | 0.0148 | 0.0169 | 0.0157 | 0.0169 | 0.0151 | |||
h | 1.7737 | 1.8104 | 1.6069 | 1.7046 | 1.5092 | 1.6876 | 1.5860 | 1.6824 | 1.4896 | ||
1.1152 | 0.8243 | 0.5223 | 0.7134 | 0.3708 | 0.6560 | 0.5024 | 0.6851 | 0.3584 | |||
0.7656 | 0.8115 | 0.8864 | 0.8593 | 0.9135 | 0.8571 | 0.8934 | 0.8661 | 0.9207 | |||
0.0524 | 0.0485 | 0.0628 | 0.0595 | 0.0675 | 0.0587 | 0.0651 | 0.0614 | 0.0703 | |||
2 | 1.2539 | 1.2771 | 1.1333 | 1.2029 | 1.0638 | 1.1905 | 1.1186 | 1.1872 | 1.0500 | ||
0.5974 | 0.4231 | 0.2689 | 0.3693 | 0.1894 | 0.3372 | 0.2587 | 0.3548 | 0.1831 | |||
R | 0.3891 | 0.3993 | 0.4393 | 0.4233 | 0.4553 | 0.4234 | 0.4433 | 0.4273 | 0.4593 | ||
0.0255 | 0.0180 | 0.0159 | 0.0172 | 0.0151 | 0.0172 | 0.0160 | 0.0172 | 0.0153 | |||
h | 1.7843 | 1.8174 | 1.6128 | 1.7117 | 1.5139 | 1.6942 | 1.5918 | 1.6895 | 1.4942 | ||
1.2097 | 0.8567 | 0.5444 | 0.7479 | 0.3836 | 0.6829 | 0.5238 | 0.7184 | 0.3707 | |||
0.7653 | 0.8113 | 0.8862 | 0.8591 | 0.9133 | 0.8569 | 0.8932 | 0.8659 | 0.9205 | |||
0.0537 | 0.0497 | 0.0640 | 0.0608 | 0.0687 | 0.0600 | 0.0663 | 0.0627 | 0.0715 | |||
3 | 1.2490 | 1.2728 | 1.1296 | 1.1987 | 1.0604 | 1.1866 | 1.1149 | 1.1832 | 1.0466 | ||
0.5827 | 0.4217 | 0.2685 | 0.3671 | 0.1904 | 0.3366 | 0.2584 | 0.3527 | 0.1841 | |||
R | 0.3908 | 0.4009 | 0.4408 | 0.4248 | 0.4567 | 0.4249 | 0.4447 | 0.4288 | 0.4607 | ||
0.0257 | 0.0182 | 0.0162 | 0.0175 | 0.0154 | 0.0175 | 0.0163 | 0.0175 | 0.0157 | |||
h | 1.7774 | 1.8113 | 1.6074 | 1.7058 | 1.5090 | 1.6885 | 1.5865 | 1.6837 | 1.4894 | ||
1.1799 | 0.8539 | 0.5437 | 0.7433 | 0.3855 | 0.6815 | 0.5233 | 0.7142 | 0.3728 | |||
0.7684 | 0.8142 | 0.8893 | 0.8623 | 0.9164 | 0.8600 | 0.8964 | 0.8691 | 0.9236 | |||
0.0545 | 0.0507 | 0.0656 | 0.0622 | 0.0704 | 0.0614 | 0.0680 | 0.0643 | 0.0732 | |||
(30, 10) | 1 | 1.1080 | 1.1374 | 1.0677 | 1.0976 | 1.0378 | 1.0956 | 1.0605 | 1.0902 | 1.0308 | |
0.1663 | 0.1585 | 0.1211 | 0.1410 | 0.1040 | 0.1388 | 0.1186 | 0.1378 | 0.1021 | |||
R | 0.4074 | 0.4109 | 0.4326 | 0.4240 | 0.4411 | 0.4241 | 0.4348 | 0.4263 | 0.4433 | ||
0.0131 | 0.0109 | 0.0101 | 0.0106 | 0.0098 | 0.0106 | 0.0102 | 0.0106 | 0.0099 | |||
h | 1.5767 | 1.6185 | 1.5194 | 1.5620 | 1.4769 | 1.5591 | 1.5091 | 1.5513 | 1.4668 | ||
0.3367 | 0.3211 | 0.2452 | 0.2854 | 0.2105 | 0.2810 | 0.2401 | 0.2790 | 0.2067 | |||
0.7760 | 0.7988 | 0.8344 | 0.8211 | 0.8477 | 0.8206 | 0.8381 | 0.8247 | 0.8514 | |||
0.0269 | 0.0260 | 0.0294 | 0.0287 | 0.0305 | 0.0286 | 0.0300 | 0.0292 | 0.0312 | |||
2 | 1.1120 | 1.1412 | 1.0713 | 1.1014 | 1.0412 | 1.0994 | 1.0640 | 1.0939 | 1.0341 | ||
0.1685 | 0.1612 | 0.1230 | 0.1432 | 0.1055 | 0.1410 | 0.1204 | 0.1399 | 0.1036 | |||
R | 0.4063 | 0.4099 | 0.4316 | 0.4230 | 0.4401 | 0.4231 | 0.4338 | 0.4253 | 0.4424 | ||
0.0133 | 0.0110 | 0.0102 | 0.0107 | 0.0099 | 0.0107 | 0.0103 | 0.0107 | 0.0099 | |||
h | 1.5825 | 1.6240 | 1.5245 | 1.5673 | 1.4816 | 1.5644 | 1.5141 | 1.5566 | 1.4715 | ||
0.3412 | 0.3265 | 0.2490 | 0.2899 | 0.2136 | 0.2855 | 0.2438 | 0.2833 | 0.2097 | |||
0.7746 | 0.7974 | 0.8330 | 0.8197 | 0.8463 | 0.8192 | 0.8367 | 0.8233 | 0.8501 | |||
0.0272 | 0.0262 | 0.0295 | 0.0288 | 0.0306 | 0.0287 | 0.0301 | 0.0293 | 0.0313 | |||
3 | 1.1092 | 1.1388 | 1.0691 | 1.0990 | 1.0392 | 1.0970 | 1.0618 | 1.0915 | 1.0321 | ||
0.1609 | 0.1548 | 0.1180 | 0.1373 | 0.1014 | 0.1352 | 0.1155 | 0.1341 | 0.0995 | |||
R | 0.4065 | 0.4102 | 0.4318 | 0.4233 | 0.4404 | 0.4233 | 0.4341 | 0.4255 | 0.4426 | ||
0.0130 | 0.0108 | 0.0100 | 0.0105 | 0.0097 | 0.0105 | 0.0100 | 0.0105 | 0.0097 | |||
h | 1.5784 | 1.6205 | 1.5213 | 1.5639 | 1.4788 | 1.5611 | 1.5110 | 1.5532 | 1.4688 | ||
0.3259 | 0.3136 | 0.2389 | 0.2780 | 0.2053 | 0.2738 | 0.2339 | 0.2716 | 0.2016 | |||
0.7746 | 0.7974 | 0.8330 | 0.8197 | 0.8463 | 0.8192 | 0.8366 | 0.8233 | 0.8500 | |||
0.0265 | 0.0255 | 0.0288 | 0.0281 | 0.0299 | 0.0280 | 0.0294 | 0.0286 | 0.0306 | |||
(45, 15) | 1 | 1.0723 | 1.0947 | 1.0490 | 1.0679 | 1.0301 | 1.0672 | 1.0442 | 1.0630 | 1.0253 | |
0.0922 | 0.0922 | 0.0761 | 0.0841 | 0.0691 | 0.0836 | 0.0750 | 0.0827 | 0.0682 | |||
R | 0.4121 | 0.4141 | 0.4289 | 0.4231 | 0.4348 | 0.4231 | 0.4305 | 0.4247 | 0.4364 | ||
0.0088 | 0.0078 | 0.0074 | 0.0076 | 0.0072 | 0.0076 | 0.0074 | 0.0076 | 0.0072 | |||
h | 1.5260 | 1.5578 | 1.4928 | 1.5197 | 1.4658 | 1.5186 | 1.4859 | 1.5127 | 1.4591 | ||
0.1868 | 0.1867 | 0.1541 | 0.1703 | 0.1399 | 0.1693 | 0.1519 | 0.1675 | 0.1381 | |||
0.7768 | 0.7920 | 0.8154 | 0.8065 | 0.8242 | 0.8063 | 0.8178 | 0.8090 | 0.8267 | |||
0.0180 | 0.0175 | 0.0189 | 0.0186 | 0.0194 | 0.0186 | 0.0192 | 0.0189 | 0.0197 | |||
2 | 1.0727 | 1.0950 | 1.0493 | 1.0682 | 1.0304 | 1.0675 | 1.0445 | 1.0633 | 1.0256 | ||
0.0925 | 0.0924 | 0.0763 | 0.0843 | 0.0692 | 0.0838 | 0.0752 | 0.0829 | 0.0683 | |||
R | 0.4120 | 0.4140 | 0.4288 | 0.4230 | 0.4347 | 0.4230 | 0.4304 | 0.4246 | 0.4363 | ||
0.0088 | 0.0078 | 0.0074 | 0.0076 | 0.0072 | 0.0076 | 0.0074 | 0.0076 | 0.0072 | |||
h | 1.5264 | 1.5583 | 1.4932 | 1.5201 | 1.4662 | 1.5191 | 1.4863 | 1.5131 | 1.4595 | ||
0.1873 | 0.1872 | 0.1545 | 0.1707 | 0.1402 | 0.1697 | 0.1522 | 0.1679 | 0.1384 | |||
0.7767 | 0.7918 | 0.8152 | 0.8064 | 0.8240 | 0.8062 | 0.8177 | 0.8088 | 0.8265 | |||
0.0180 | 0.0175 | 0.0189 | 0.0186 | 0.0194 | 0.0186 | 0.0192 | 0.0188 | 0.0197 | |||
3 | 1.0699 | 1.0923 | 1.0468 | 1.0656 | 1.0279 | 1.0648 | 1.0419 | 1.0607 | 1.0232 | ||
0.0914 | 0.0914 | 0.0756 | 0.0834 | 0.0687 | 0.0829 | 0.0745 | 0.0821 | 0.0679 | |||
R | 0.4129 | 0.4148 | 0.4297 | 0.4239 | 0.4355 | 0.4239 | 0.4313 | 0.4254 | 0.4371 | ||
0.0088 | 0.0078 | 0.0074 | 0.0076 | 0.0072 | 0.0076 | 0.0074 | 0.0076 | 0.0072 | |||
h | 1.5225 | 1.5544 | 1.4896 | 1.5164 | 1.4627 | 1.5153 | 1.4827 | 1.5094 | 1.4560 | ||
0.1851 | 0.1850 | 0.1531 | 0.1689 | 0.1392 | 0.1680 | 0.1509 | 0.1662 | 0.1374 | |||
0.7781 | 0.7933 | 0.8167 | 0.8078 | 0.8255 | 0.8076 | 0.8191 | 0.8103 | 0.8280 | |||
0.0182 | 0.0177 | 0.0192 | 0.0189 | 0.0197 | 0.0189 | 0.0195 | 0.0191 | 0.0200 |
(n, s) | Scheme | Par | MLE | Prior I | Prior II | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | BS | EBS1 | EBS2 | EBS3 | ||||
(20, 5) | 1 | 1.1218 | 1.1601 | 0.9065 | 0.9917 | 0.8213 | 1.0815 | 0.8947 | 0.9789 | 0.8106 | |
0.4461 | 0.3543 | 0.1235 | 0.1880 | 0.0846 | 0.2820 | 0.1203 | 0.1812 | 0.0843 | |||
R | 0.4422 | 0.4465 | 0.5227 | 0.4973 | 0.5481 | 0.4702 | 0.5266 | 0.5012 | 0.5519 | ||
0.0254 | 0.0186 | 0.0135 | 0.0144 | 0.0140 | 0.0172 | 0.0137 | 0.0145 | 0.0145 | |||
h | 2.0192 | 2.0882 | 1.6317 | 1.7851 | 1.4783 | 1.9466 | 1.6105 | 1.7619 | 1.4591 | ||
1.4453 | 1.1480 | 0.4001 | 0.6092 | 0.2740 | 0.9138 | 0.3897 | 0.5871 | 0.2732 | |||
0.8555 | 0.8834 | 0.9981 | 0.9602 | 1.0360 | 0.9197 | 1.0041 | 0.9660 | 1.0422 | |||
0.0375 | 0.0326 | 0.0450 | 0.0397 | 0.0533 | 0.0370 | 0.0469 | 0.0411 | 0.0557 | |||
2 | 1.1285 | 1.1647 | 0.9093 | 0.9953 | 0.8232 | 1.0858 | 0.8975 | 0.9824 | 0.8125 | ||
0.4839 | 0.3687 | 0.1278 | 0.1961 | 0.0864 | 0.2940 | 0.1245 | 0.1889 | 0.0861 | |||
R | 0.4415 | 0.4459 | 0.5222 | 0.4967 | 0.5476 | 0.4696 | 0.5261 | 0.5006 | 0.5515 | ||
0.0260 | 0.0190 | 0.0137 | 0.0147 | 0.0141 | 0.0176 | 0.0139 | 0.0148 | 0.0146 | |||
h | 2.0313 | 2.0965 | 1.6367 | 1.7916 | 1.4818 | 1.9544 | 1.6154 | 1.7683 | 1.4626 | ||
1.5678 | 1.1946 | 0.4142 | 0.6353 | 0.2800 | 0.9526 | 0.4033 | 0.6122 | 0.2790 | |||
0.8551 | 0.8830 | 0.9978 | 0.9599 | 1.0358 | 0.9194 | 1.0038 | 0.9657 | 1.0420 | |||
0.0384 | 0.0334 | 0.0457 | 0.0404 | 0.0539 | 0.0379 | 0.0476 | 0.0418 | 0.0563 | |||
3 | 1.1241 | 1.1608 | 0.9064 | 0.9920 | 0.8207 | 1.0821 | 0.8946 | 0.9791 | 0.8101 | ||
0.4720 | 0.3672 | 0.1286 | 0.1959 | 0.0877 | 0.2931 | 0.1253 | 0.1889 | 0.0874 | |||
R | 0.4431 | 0.4474 | 0.5234 | 0.4981 | 0.5488 | 0.4710 | 0.5273 | 0.5020 | 0.5526 | ||
0.0262 | 0.0192 | 0.0140 | 0.0150 | 0.0144 | 0.0178 | 0.0142 | 0.0151 | 0.0149 | |||
h | 2.0234 | 2.0895 | 1.6315 | 1.7856 | 1.4773 | 1.9478 | 1.6103 | 1.7624 | 1.4581 | ||
1.5291 | 1.1896 | 0.4167 | 0.6348 | 0.2842 | 0.9497 | 0.4059 | 0.6120 | 0.2832 | |||
0.8576 | 0.8854 | 1.0002 | 0.9623 | 1.0380 | 0.9218 | 1.0062 | 0.9681 | 1.0443 | |||
0.0389 | 0.0339 | 0.0468 | 0.0414 | 0.0552 | 0.0387 | 0.0487 | 0.0428 | 0.0576 | |||
(30, 10) | 1 | 0.9972 | 1.0296 | 0.9052 | 0.9476 | 0.8627 | 0.9918 | 0.8990 | 0.9411 | 0.8568 | |
0.1347 | 0.1329 | 0.0736 | 0.0916 | 0.0608 | 0.1162 | 0.0726 | 0.0898 | 0.0605 | |||
R | 0.4621 | 0.4621 | 0.5038 | 0.4897 | 0.5180 | 0.4750 | 0.5060 | 0.4919 | 0.5202 | ||
0.0129 | 0.0110 | 0.0090 | 0.0095 | 0.0089 | 0.0105 | 0.0090 | 0.0095 | 0.0090 | |||
h | 1.7950 | 1.8533 | 1.6293 | 1.7057 | 1.5529 | 1.7852 | 1.6182 | 1.6941 | 1.5423 | ||
0.4364 | 0.4306 | 0.2384 | 0.2967 | 0.1970 | 0.3764 | 0.2351 | 0.2909 | 0.1959 | |||
0.8679 | 0.8814 | 0.9386 | 0.9192 | 0.9579 | 0.8993 | 0.9417 | 0.9223 | 0.9611 | |||
0.0191 | 0.0179 | 0.0209 | 0.0196 | 0.0229 | 0.0191 | 0.0214 | 0.0200 | 0.0235 | |||
2 | 1.0008 | 1.0331 | 0.9080 | 0.9507 | 0.8652 | 0.9952 | 0.9018 | 0.9442 | 0.8594 | ||
0.1365 | 0.1352 | 0.0745 | 0.0929 | 0.0614 | 0.1180 | 0.0735 | 0.0911 | 0.0610 | |||
R | 0.4609 | 0.4611 | 0.5029 | 0.4887 | 0.5172 | 0.4740 | 0.5051 | 0.4909 | 0.5193 | ||
0.0131 | 0.0111 | 0.0090 | 0.0096 | 0.0089 | 0.0106 | 0.0091 | 0.0096 | 0.0091 | |||
h | 1.8015 | 1.8596 | 1.6343 | 1.7112 | 1.5574 | 1.7914 | 1.6232 | 1.6996 | 1.5468 | ||
0.4422 | 0.4379 | 0.2415 | 0.3011 | 0.1989 | 0.3825 | 0.2380 | 0.2952 | 0.1977 | |||
0.8666 | 0.8802 | 0.9374 | 0.9181 | 0.9568 | 0.8981 | 0.9405 | 0.9211 | 0.9600 | |||
0.0193 | 0.0180 | 0.0209 | 0.0197 | 0.0229 | 0.0192 | 0.0214 | 0.0200 | 0.0235 | |||
3 | 0.9983 | 1.0309 | 0.9063 | 0.9488 | 0.8639 | 0.9930 | 0.9002 | 0.9424 | 0.8580 | ||
0.1304 | 0.1298 | 0.0717 | 0.0892 | 0.0594 | 0.1132 | 0.0707 | 0.0875 | 0.0590 | |||
R | 0.4613 | 0.4614 | 0.5032 | 0.4890 | 0.5174 | 0.4743 | 0.5054 | 0.4912 | 0.5196 | ||
0.0127 | 0.0109 | 0.0088 | 0.0093 | 0.0088 | 0.0103 | 0.0089 | 0.0093 | 0.0089 | |||
h | 1.7969 | 1.8556 | 1.6314 | 1.7079 | 1.5550 | 1.7875 | 1.6203 | 1.6962 | 1.5444 | ||
0.4223 | 0.4205 | 0.2324 | 0.2891 | 0.1924 | 0.3667 | 0.2292 | 0.2834 | 0.1913 | |||
0.8667 | 0.8803 | 0.9375 | 0.9181 | 0.9568 | 0.8981 | 0.9406 | 0.9212 | 0.9600 | |||
0.0188 | 0.0176 | 0.0205 | 0.0192 | 0.0225 | 0.0187 | 0.0210 | 0.0196 | 0.0231 | |||
(45, 15) | 1 | 0.9651 | 0.9889 | 0.9069 | 0.9350 | 0.8787 | 0.9640 | 0.9027 | 0.9307 | 0.8747 | |
0.0747 | 0.0764 | 0.0507 | 0.0587 | 0.0447 | 0.0692 | 0.0502 | 0.0579 | 0.0445 | |||
R | 0.4675 | 0.4670 | 0.4958 | 0.4860 | 0.5057 | 0.4759 | 0.4973 | 0.4875 | 0.5072 | ||
0.0085 | 0.0077 | 0.0066 | 0.0069 | 0.0065 | 0.0074 | 0.0066 | 0.0069 | 0.0066 | |||
h | 1.7372 | 1.7800 | 1.6324 | 1.6831 | 1.5817 | 1.7352 | 1.6249 | 1.6753 | 1.5745 | ||
0.2421 | 0.2475 | 0.1642 | 0.1902 | 0.1448 | 0.2241 | 0.1626 | 0.1875 | 0.1441 | |||
0.8698 | 0.8787 | 0.9169 | 0.9039 | 0.9299 | 0.8906 | 0.9189 | 0.9059 | 0.9320 | |||
0.0128 | 0.0122 | 0.0134 | 0.0129 | 0.0142 | 0.0127 | 0.0136 | 0.0130 | 0.0145 | |||
2 | 0.9654 | 0.9892 | 0.9071 | 0.9353 | 0.8790 | 0.9643 | 0.9030 | 0.9310 | 0.8749 | ||
0.0749 | 0.0766 | 0.0508 | 0.0588 | 0.0448 | 0.0694 | 0.0503 | 0.0580 | 0.0445 | |||
R | 0.4674 | 0.4670 | 0.4957 | 0.4859 | 0.5056 | 0.4758 | 0.4973 | 0.4874 | 0.5071 | ||
0.0085 | 0.0077 | 0.0066 | 0.0069 | 0.0065 | 0.0074 | 0.0066 | 0.0069 | 0.0065 | |||
h | 1.7377 | 1.7805 | 1.6328 | 1.6835 | 1.5822 | 1.7357 | 1.6253 | 1.6758 | 1.5749 | ||
0.2428 | 0.2481 | 0.1645 | 0.1906 | 0.1450 | 0.2247 | 0.1628 | 0.1879 | 0.1443 | |||
0.8697 | 0.8786 | 0.9167 | 0.9037 | 0.9297 | 0.8904 | 0.9188 | 0.9058 | 0.9319 | |||
0.0128 | 0.0122 | 0.0134 | 0.0128 | 0.0142 | 0.0127 | 0.0136 | 0.0130 | 0.0145 | |||
3 | 0.9629 | 0.9867 | 0.9050 | 0.9330 | 0.8770 | 0.9619 | 0.9008 | 0.9287 | 0.8729 | ||
0.0740 | 0.0757 | 0.0505 | 0.0583 | 0.0447 | 0.0686 | 0.0500 | 0.0575 | 0.0445 | |||
R | 0.4683 | 0.4678 | 0.4965 | 0.4867 | 0.5063 | 0.4766 | 0.4980 | 0.4882 | 0.5079 | ||
0.0085 | 0.0077 | 0.0066 | 0.0069 | 0.0066 | 0.0074 | 0.0067 | 0.0069 | 0.0066 | |||
h | 1.7333 | 1.7761 | 1.6290 | 1.6795 | 1.5786 | 1.7314 | 1.6215 | 1.6717 | 1.5713 | ||
0.2399 | 0.2452 | 0.1636 | 0.1890 | 0.1447 | 0.2223 | 0.1620 | 0.1864 | 0.1441 | |||
0.8709 | 0.8798 | 0.9179 | 0.9049 | 0.9309 | 0.8916 | 0.9200 | 0.9070 | 0.9330 | |||
0.0129 | 0.0123 | 0.0136 | 0.0130 | 0.0144 | 0.0128 | 0.0138 | 0.0132 | 0.0147 |
0.08 | 0.20 | 0.40 | 0.50 | 0.51 | 0.81 | 0.90 | 1.05 | 1.19 | 1.26 |
1.35 | 1.40 | 1.46 | 1.76 | 2.02 | 2.02 | 2.07 | 2.09 | 2.23 | 2.26 |
2.46 | 2.54 | 2.62 | 2.64 | 2.69 | 2.69 | 2.75 | 2.83 | 2.87 | 3.02 |
3.70 | 3.82 | 3.25 | 3.31 | 3.36 | 3.36 | 3.48 | 3.52 | 3.57 | 3.64 |
4.51 | 4.87 | 3.88 | 4.18 | 4.23 | 4.26 | 4.33 | 4.34 | 4.40 | 4.50 |
5.41 | 5.49 | 4.98 | 5.06 | 5.09 | 5.17 | 5.32 | 5.32 | 5.34 | 5.41 |
6.97 | 7.09 | 5.62 | 5.71 | 5.85 | 6.25 | 6.54 | 6.76 | 6.93 | 6.94 |
7.87 | 7.93 | 7.26 | 7.28 | 7.32 | 7.39 | 7.59 | 7.62 | 7.63 | 7.66 |
9.74 | 10.06 | 8.26 | 8.37 | 8.53 | 8.65 | 8.66 | 9.02 | 9.22 | 9.47 |
12.03 | 12.07 | 10.34 | 10.66 | 10.75 | 11.25 | 11.64 | 11.79 | 11.98 | 12.02 |
12.63 | 13.11 | 13.29 | 13.80 | 14.24 | 14.76 | 14.77 | 14.83 | 15.96 | 16.62 |
17.12 | 17.14 | 17.36 | 18.10 | 19.13 | 20.28 | 21.73 | 22.69 | 23.63 | 25.74 |
25.82 | 26.31 | 32.15 | 34.26 | 36.66 | 43.01 | 46.12 | 79.05 |
3.70 | 2.74 | 2.73 | 2.50 | 3.60 | 3.11 | 3.27 | 2.87 | 1.47 | 3.11 |
4.42 | 2.41 | 3.19 | 3.22 | 1.69 | 3.28 | 3.09 | 1.87 | 3.15 | 4.90 |
3.75 | 2.43 | 2.95 | 2.97 | 3.39 | 2.98 | 2.53 | 2.67 | 2.93 | 3.22 |
3.39 | 2.81 | 4.20 | 3.33 | 2.55 | 3.31 | 3.31 | 2.85 | 2.56 | 3.56 |
3.15 | 2.35 | 2.55 | 2.59 | 2.38 | 2.81 | 2.77 | 2.17 | 2.83 | 1.92 |
1.41 | 3.68 | 2.97 | 1.36 | 0.98 | 2.76 | 4.91 | 3.68 | 1.84 | 1.59 |
3.19 | 1.57 | 0.81 | 5.56 | 1.73 | 1.59 | 2.00 | 1.22 | 1.12 | 1.71 |
2.17 | 1.17 | 5.08 | 2.48 | 1.18 | 3.51 | 2.17 | 1.69 | 1.25 | 4.38 |
1.84 | 0.39 | 3.68 | 2.48 | 0.85 | 1.61 | 2.79 | 4.70 | 2.03 | 1.80 |
1.57 | 1.08 | 2.03 | 1.61 | 2.12 | 1.89 | 2.88 | 2.82 | 2.05 | 3.65 |
s | Scheme | Par | MLE | Bayesian | E-Bayesian | ||
---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | ||||
32 | 1 | 0.0804 | 0.0816 | 0.0815 | 0.0816 | 0.0815 | |
R | 0.9305 | 0.9296 | 0.9297 | 0.9296 | 0.9297 | ||
h | 0.0838 | 0.0850 | 0.0850 | 0.0850 | 0.0849 | ||
7.8128 | 7.9351 | 7.9408 | 7.9360 | 7.9455 | |||
2 | 0.0512 | 0.0520 | 0.0520 | 0.0520 | 0.0520 | ||
R | 0.9552 | 0.9545 | 0.9546 | 0.9545 | 0.9546 | ||
h | 0.0534 | 0.0542 | 0.0542 | 0.0542 | 0.0542 | ||
12.0116 | 12.1944 | 12.2004 | 12.1958 | 12.2051 | |||
3 | 0.0261 | 0.0265 | 0.0265 | 0.0265 | 0.0265 | ||
R | 0.9769 | 0.9765 | 0.9765 | 0.9765 | 0.9765 | ||
h | 0.0273 | 0.0277 | 0.0277 | 0.0277 | 0.0277 | ||
22.8303 | 23.1690 | 23.1762 | 23.1717 | 23.1807 |
s | Scheme | Par | MLE | Bayesian | E-Bayesian | ||
---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | ||||
20 | 1 | 0.0510 | 0.0522 | 0.0522 | 0.0522 | 0.0521 | |
R | 0.9627 | 0.9619 | 0.9619 | 0.9619 | 0.9619 | ||
h | 0.1179 | 0.1207 | 0.1207 | 0.1207 | 0.1207 | ||
2.5453 | 2.5545 | 2.5553 | 2.5547 | 2.5559 | |||
2 | 0.0233 | 0.0239 | 0.0239 | 0.0239 | 0.0239 | ||
R | 0.9828 | 0.9824 | 0.9824 | 0.9824 | 0.9824 | ||
h | 0.0539 | 0.0552 | 0.0552 | 0.0552 | 0.0552 | ||
3.3694 | 3.3809 | 3.3815 | 3.3811 | 3.3818 | |||
3 | 0.0110 | 0.0113 | 0.0113 | 0.0113 | 0.0113 | ||
R | 0.9918 | 0.9916 | 0.9916 | 0.9916 | 0.9916 | ||
h | 0.0255 | 0.0261 | 0.0261 | 0.0261 | 0.0261 | ||
4.4037 | 4.4182 | 4.4188 | 4.4186 | 4.4190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okasha, H.M.; Mohammed, H.S.; Lio, Y. E-Bayesian Estimation of Reliability Characteristics of a Weibull Distribution with Applications. Mathematics 2021, 9, 1261. https://doi.org/10.3390/math9111261
Okasha HM, Mohammed HS, Lio Y. E-Bayesian Estimation of Reliability Characteristics of a Weibull Distribution with Applications. Mathematics. 2021; 9(11):1261. https://doi.org/10.3390/math9111261
Chicago/Turabian StyleOkasha, Hassan M., Heba S. Mohammed, and Yuhlong Lio. 2021. "E-Bayesian Estimation of Reliability Characteristics of a Weibull Distribution with Applications" Mathematics 9, no. 11: 1261. https://doi.org/10.3390/math9111261
APA StyleOkasha, H. M., Mohammed, H. S., & Lio, Y. (2021). E-Bayesian Estimation of Reliability Characteristics of a Weibull Distribution with Applications. Mathematics, 9(11), 1261. https://doi.org/10.3390/math9111261