Ultrasonic Waves in Bubbly Liquids: An Analytic Approach
Abstract
:1. Introduction: Mathematical Model
2. Similarity Reductions
3. Travelling Wave Reduction: Exact Solutions
3.1. The Non-Isothermal Case
3.2. The Isothermal Case
3.3. Examples
3.3.1. Example 1
3.3.2. Example 2
3.3.3. Example 3
3.3.4. Example 4
3.3.5. Example 5
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Classification: γ ≠ 1
Appendix B. Classification: γ = 1
References
- Baranowska, A. Theoretical Studies of Nonlinear Generation Efficiency in a Bubble Layer. Arch. Acoust. 2012, 37, 287–294. [Google Scholar] [CrossRef]
- Druzhinin, O.A.; Ostrovsky, L.A.; Prosperetti, A. Low-frequency acoustic wave generation in a resonant bubble layer. J. Acoust. Soc. Am. 1996, 100, 3570–3580. [Google Scholar] [CrossRef]
- Hamilton, M.F.; Blackstock, D.T. (Eds.) Nonlinear Acoustics; Academy Press: San Diego, CA, USA, 1998. [Google Scholar]
- Karpov, S.; Prosperetti, A.; Ostrovsky, L. Nonlinear wave interactions in bubble layers. J. Acoust. Soc. Am. 2003, 113, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Vanhille, C.; Campos-Pozuelo, C. Nonlinear ultrasonic propagation in bubbly liquids: A numerical model. Ultrasound Med. Biol. 2008, 34, 792–808. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, A. Numerical modeling of the nonlinear wave propagation in a bubble layer. Hydroacoustics 2011, 14, 9–16. [Google Scholar]
- Tejedor Sastre, M.T.; Vanhille, C. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids. Ultrason. Sonochem. 2017, 34, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Phylos. Mag. Ser. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.S.; Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Leighton, T.G. The Rayleigh–Plesset equation in terms of volume with explicit shear losses. Ultrasonics 2008, 48, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Ershkov, S.V.; Leshchenko, D.V. Dynamics of a charged particle in electromagnetic field with Joule effect. Rom. Rep. Phys. 2020, 72, 1–11. [Google Scholar]
- Ershkov, S.V.; Christianto, V.; Shamin, R.V.; Giniyatullin, A.R. About analytical ansatz to the solving procedure for Kelvin-Kirchhoff equations. Eur. J. Mech. B Fluids 2020, 79C, 87–91. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Hille, E. Ordinary Differential Equations in the Complex Domain; Dover: New York, NY, USA, 1997. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Stephani, H. Differential Equations, Their Solution Using Symmetries; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kudryashov, N.A.; Sinelshchikov, D.I. Analytical solutions of the Rayleigh equation for empty and gas filled bubble. J. Phys. A Math Theor. 2014, 47, 405202. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A.; Sinelshchikov, D.I. Analytical solutions for problems of bubble dynamics. Phys. Lett. A 2014, 379, 798–802. [Google Scholar] [CrossRef] [Green Version]
- Mancas, S.C.; Rosu, H.C. Cavitation of spherical bubbles: Closed-form, parametric and numerical solutions. Phys. Fluids 2016, 28, 022009. [Google Scholar] [CrossRef] [Green Version]
- Sundman, K.F. Mémoire sur le problème des trois corps. Acta Math. 1913, 36, 105–179. [Google Scholar] [CrossRef]
- Duarte, D.G.S.; Moreira, I.C.; Santos, F.C. Linearization under non-point transformations. J. Phys. A Math. Gen. 1994, 27, L739–L743. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordoa, P.R.; Pickering, A. Ultrasonic Waves in Bubbly Liquids: An Analytic Approach. Mathematics 2021, 9, 1309. https://doi.org/10.3390/math9111309
Gordoa PR, Pickering A. Ultrasonic Waves in Bubbly Liquids: An Analytic Approach. Mathematics. 2021; 9(11):1309. https://doi.org/10.3390/math9111309
Chicago/Turabian StyleGordoa, Pilar Ruiz, and Andrew Pickering. 2021. "Ultrasonic Waves in Bubbly Liquids: An Analytic Approach" Mathematics 9, no. 11: 1309. https://doi.org/10.3390/math9111309
APA StyleGordoa, P. R., & Pickering, A. (2021). Ultrasonic Waves in Bubbly Liquids: An Analytic Approach. Mathematics, 9(11), 1309. https://doi.org/10.3390/math9111309