No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Mathematical Formulation
3.2. No-Idle Calculation Mechanism
3.3. Solution Algorithm
3.3.1. Solution Initialization and Decoding
3.3.2. Destruction and Construction Methods
- Step 1. Remove the last job from and name it .
- Step 2. Insert into before the last job. Name the jobs before and after as and , respectively.
- Step 3. Remove job and rename it to .
- Step 4. Insert next to the first job in and name the jobs before and after as and , respectively.
- Step 5. Insert right before .
- Step 6. Select and move it to the position before .
- Step 7. Select and move it to the position after .
3.3.3. Local Search Method
3.3.4. Acceptance and Stopping Conditions
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Title | Authors (Year) | Publication | Scheduling Extension | Objective Function |
---|---|---|---|---|
Note: On the Two-Machine No-Idle Flowshop Problem | Cepek et al. (2000) | Naval Research Logistics | No-idle permutation flowshop | Total completion time |
Flowshop/no-idle scheduling to minimize the mean flowtime | Narain and Bagga (2005) | Australia and New Zealand Industrial and Applied Mathematics (ANZIAM) | No-idle permutation flowshop | Average flowtime |
No-wait flexible flowshop scheduling with no-idle machines | Wang et al. (2005) | Operations Research Letters | No-wait flexible flowshop with no-idle machines | Makespan |
A differential evolution algorithm for the no-idle flowshop scheduling problem with total tardiness criterion | Tasgetiren et al. (2011) | International Journal of Production Research | No-idle permutation flowshop | Total tardiness |
Tabu search algorithm for no-idle flowshop scheduling problems | Ren et al. (2010) | Computer Engineering and Design | No-idle permutation flowshop | Makespan |
A DE Based Variable Iterated Greedy Algorithm for the No-Idle Permutation Flowshop Scheduling Problem with Total Flowtime Criterion | Tasgetiren et al. (2011) | Conference | No-idle permutation flowshop | Total flowtime |
Hybrid Tabu Search Algorithm for bi-criteria no-idle permutation flow shop scheduling problem | Ren et al. (2011) | Conference | Bi-objective no-idle permutation flowshop | Makespan and total flowtime |
A new heuristic method for minimizing the makespan in a no-idle permutation flowshop | Nagano & Branco (2012) | Conference | No-idle permutation flowshop | Makespan |
A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion | Tasgetiren et al. (2013b) | Applied Mathematical Modelling | No-idle permutation flowshop | Total tardiness |
A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem | Tasgetiren et al. (2013a) | Computers & Operations Research | No-idle permutation flowshop | Makespan |
Metaheuristics for the no-idle permutation flowshop scheduling problem | Büyükdağlı (2013) | Thesis | No-idle permutation flowshop | - |
An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem | Pan and Ruiz (2014) | OMEGA | Mixed no-idle permutation flowshop | Makespan |
Research on no-idle permutation flowshop scheduling with time-dependent learning effect and deteriorating jobs | Lu (2016) | Applied Mathematical Modelling | No-idle permutation flowshop scheduling with time-dependent learning effect and deteriorating jobs | Makespan |
Heuristics for the mixed no-idle flowshop with sequence-dependent setup times and total flowtime criterion | Rossi and Nagano (2019a) | Expert Systems with Applications | Mixed no-idle permutation flowshop with SDST | Total flowtime |
Heuristics for the mixed no-idle flowshop with sequence-dependent setup times | Rossi and Nagano (2019b) | Journal of the Operational Research Society | Mixed no-idle permutation flowshop with SDST | Makespan |
High-performing heuristics to minimize flowtime in no-idle permutation flowshop | Nagano et al. (2019) | Engineering Optimization | No-idle permutation flowshop | Total flowtime |
A Variable Iterated Local Search Algorithm for Energy-Efficient No-idle Flowshop Scheduling Problem | Tasgetiren et al. (2019) | Conference | Bi-objective no-idle permutation flowshop | Makespan and total energy consumption |
A contribution for the mixed no-idle flowshop scheduling problem with sequence-dependent setup times: analysis and solutions procedures | Rossi (2020) | Thesis | Mixed no-idle flowshop with sequence-dependent setup times | - |
A hybrid discrete water wave optimization algorithm for the no-idle flowshop scheduling problem with total tardiness criterion | Zhao et al. (2020) | Expert Systems with Applications | No-idle permutation flowshop | Total tardiness |
A new iterated greedy algorithm for no-idle permutation flowshop scheduling with the total tardiness criterion | Riahi et al. (2020) | Computers & Operations Research | No-idle permutation flowshop | Total tardiness |
Benders decomposition for the mixed no-idle permutation flowshop scheduling problem | Bektaş et al. (2020) | Journal of Scheduling | Mixed no-idle permutation flowshop | Makespan |
Heuristics and metaheuristics for the mixed no-idle flowshop with sequence-dependent setup times and total tardiness minimization | Rossi and Nagano (2020) | Swarm and Evolutionary Computation | Mixed no-idle permutation flowshop with sequence-dependent setup times | Total tardiness |
A Novel General Variable Neighborhood Search through Q-Learning for No-Idle Flowshop Scheduling | Oztop et al. (2020) | Conference | No-idle permutation flowshop | Makespan |
Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints | Pagnozzi and Stützle (2021) | Operations Research Perspectives | No-idle permutation flowshop | Makespan |
A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem | Zhao et al. (2021) | Computers & Industrial Engineering | Distributed assembly no-idle flow-shop scheduling problem | Maximum assembly completion time |
Appendix B
Inst. | BFS | Inst. | BFS | Inst. | BFS | Inst. | BFS | Inst. | BFS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 9324.5 | 2 | 8768.5 | 3 | 9004.0 | 4 | 9201.0 | 5 | 9840.0 | |||||
17,456.0 | 15,359.5 | 15,311.0 | 15,060.5 | 12,932.0 | ||||||||||
29,148.5 | 27,458.5 | 29,330.0 | 27,500.5 | 30,123.5 | ||||||||||
45,895.5 | 40,849.5 | 39,540.0 | 40,900.0 | 46,931.0 | ||||||||||
57,582.5 | 56,394.5 | 55,894.5 | 60,125.5 | 53,752.0 | ||||||||||
105,555.0 | 119,208.5 | 95984.5 | 113,445.5 | 97,119.0 | ||||||||||
155,420.0 | 134,879.0 | 133,638.0 | 133,875.5 | 147,159.0 | ||||||||||
201,117.5 | 178,403.0 | 212,533.0 | 191,444.5 | 195,680.5 | ||||||||||
324,920.5 | 297,506.0 | 310,170.5 | 345,987.0 | 355,364.0 | ||||||||||
656,480.0 | 752,145.0 | 729,595.0 | 618,158.0 | 667,624.5 | ||||||||||
989,277.5 | 962,653.5 | 944,299.5 | 903,733.0 | 987,579.5 | ||||||||||
4,448,496.5 | 4,550,718 | 4,927,311 | 4,443,889 | 485,7293 | ||||||||||
6 | 9974.0 | 7 | 7746.5 | 8 | 8809.5 | 9 | 9435.5 | 10 | 8213.0 | |||||
15,218.5 | 13,795.0 | 15,206.0 | 15,190.0 | 14,449.5 | ||||||||||
30,508.0 | 28,473.5 | 29,676.5 | 29,177.0 | 32,824.0 | ||||||||||
40,562.5 | 43,979.0 | 41,450.0 | 39,433.0 | 40,033.0 | ||||||||||
67,395.5 | 61,381.0 | 65,124.5 | 59,999.0 | 61,566.0 | ||||||||||
116,283.0 | 113,469.0 | 102,066.0 | 104,491.5 | 111,647.5 | ||||||||||
135,117.0 | 158,846.0 | 130,140.5 | 138,971.0 | 139,377.0 | ||||||||||
198,459.5 | 216,278.5 | 214,725.5 | 21,8945.0 | 201,118.0 | ||||||||||
294,212.0 | 310,486.0 | 300,453.0 | 321,981.0 | 301,118.0 | ||||||||||
698,950.5 | 6,123,41.5 | 705,257.0 | 601,637.0 | 700,784.5 | ||||||||||
976,708.0 | 1,025,032 | 1,003,762 | 919,347.5 | 914,365.5 | ||||||||||
446,0524 | 4,829,931 | 4,979,367 | 4,414,894 | 489,4606 |
References
- Zhu, Z.-S.; Liao, H.; Cao, H.-S.; Wang, L.; Wei, Y.-M.; Yan, J. The differences of carbon intensity reduction rate across 89 countries in recent three decades. Appl. Energy 2014, 113, 808–815. [Google Scholar] [CrossRef]
- Sutherland, B.R. Tax Carbon Emissions and Credit Removal. Joule 2019, 3, 2071–2073. [Google Scholar] [CrossRef]
- Agency, I.E. Tracking Industrial Energy Efficiency and CO2 Emissions; OECD: Paris, France, 2007; ISBN 9789264030169. [Google Scholar]
- Pourhejazy, P.; Kwon, O.K.; Lim, H. Integrating Sustainability into the Optimization of Fuel Logistics Networks. KSCE J. Civ. Eng. 2019, 23, 1369–1383. [Google Scholar] [CrossRef]
- Zhang, H.C.; Kuo, T.C.; Lu, H.; Huang, S.H. Environmentally conscious design and manufacturing: A state-of-the-art survey. J. Manuf. Syst. 1997, 16, 352–371. [Google Scholar] [CrossRef]
- Pourhejazy, P.; Kwon, O.K. A Practical Review of Green Supply Chain Management: Disciplines and Best Practices. J. Int. Logist. Trade 2016, 14, 156–164. [Google Scholar] [CrossRef]
- Peng, C.; Peng, T.; Zhang, Y.; Tang, R.; Hu, L. Minimising non-processing energy consumption and tardiness fines in a mixed-flow shop. Energies 2018, 11, 3382. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-Y.; Pourhejazy, P.; Ying, K.-C.; Lin, C.-F. Unsupervised Learning-based Artificial Bee Colony for minimizing non-value-adding operations. Appl. Soft Comput. 2021, 105, 107280. [Google Scholar] [CrossRef]
- Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod. 2018, 172, 3249–3264. [Google Scholar] [CrossRef]
- Piroozfard, H.; Wong, K.Y.; Wong, W.P. Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm. Resour. Conserv. Recycl. 2018, 128, 267–283. [Google Scholar] [CrossRef]
- Zheng, X.-L.; Wang, L. A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated parallel machine green scheduling problem. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 790–800. [Google Scholar] [CrossRef]
- Safarzadeh, H.; Niaki, S.T.A. Bi-objective green scheduling in uniform parallel machine environments. J. Clean. Prod. 2019, 217, 559–572. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Aktas, E.; Besikci, U. Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. Eur. J. Oper. Res. 2016, 248, 772–788. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Pan, Q.; Gao, L.; Li, X.; Meng, L.; Peng, K. A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem. Comput. Ind. Eng. 2019, 136, 325–344. [Google Scholar] [CrossRef]
- Cota, L.P.; Coelho, V.N.; Guimarães, F.G.; Souza, M.J.F. Bi-criteria formulation for green scheduling with unrelated parallel machines with sequence-dependent setup times. Int. Trans. Oper. Res. 2021, 28, 996–1017. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, C.; Sun, Q.-M. Green job shop scheduling problem with discrete whale optimization algorithm. IEEE Access 2019, 7, 43153–43166. [Google Scholar] [CrossRef]
- Aghelinejad, M.; Ouazene, Y.; Yalaoui, A. Complexity analysis of energy-efficient single machine scheduling problems. Oper. Res. Perspect. 2019, 6, 100105. [Google Scholar] [CrossRef]
- Li, K.; Zhang, X.; Leung, J.Y.-T.; Yang, S.-L. Parallel machine scheduling problems in green manufacturing industry. J. Manuf. Syst. 2016, 38, 98–106. [Google Scholar] [CrossRef]
- Niu, S.; Song, S.; Chiong, R. A Distributionally Robust Scheduling Approach for Uncertain Steelmaking and Continuous Casting Processes. IEEE Trans. Syst. Man Cybern. Syst. 2021. [Google Scholar] [CrossRef]
- Bektaş, T.; Hamzadayı, A.; Ruiz, R. Benders decomposition for the mixed no-idle permutation flowshop scheduling problem. J. Sched. 2020, 23, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.-Y.; Song, S.; Gupta, J.N.D.; Wang, C.; Zhang, R.; Wu, C. New block properties for flowshop scheduling with blocking and their application in an iterated greedy algorithm. Int. J. Prod. Res. 2016, 54, 4759–4772. [Google Scholar] [CrossRef]
- Foumani, M.; Smith-Miles, K. The impact of various carbon reduction policies on green flowshop scheduling. Appl. Energy 2019, 249, 300–315. [Google Scholar] [CrossRef]
- Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326. [Google Scholar]
- Tasgetiren, M.F.; Pan, Q.-K.; Wang, L.; Chen, A.H.-L. A DE based variable iterated greedy algorithm for the no-idle permutation flowshop scheduling problem with total flowtime criterion. In Proceedings of the International Conference on Intelligent Computing, Zhengzhou, China, 11–14 August 2011; pp. 83–90. [Google Scholar]
- Ren, W.-J.; Duan, J.-H.; Zhang, F.; Han, H.; Zhang, M. Hybrid Tabu Search Algorithm for bi-criteria No-idle permutation flow shop scheduling problem. In Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25 May 2011; pp. 1699–1702. [Google Scholar]
- Nagano, M.S.; Branco, F.J.C. A new heuristic method for minimizing the makespan in a no-idle permutation flowshop. In Proceedings of the Simposio Brasileiro de Pesquisa Operacional, Rio de Janeiro, Brazil, 24–28 September 2012. [Google Scholar]
- Fatih Tasgetiren, M.; Öztop, H.; Gao, L.; Pan, Q.K.; Li, X. A Variable Iterated Local Search Algorithm for Energy-Efficient No-idle Flowshop Scheduling Problem. Procedia Manuf. 2019, 39, 1185–1193. [Google Scholar] [CrossRef]
- Oztop, H.; Tasgetiren, M.F.; Kandiller, L.; Pan, Q.K. A Novel General Variable Neighborhood Search through Q-Learning for No-Idle Flowshop Scheduling. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020. [Google Scholar] [CrossRef]
- Rossi, F.L. A Contribution for the Mixed No-Idle Flowshop Scheduling Problem with Sequence-Dependent Setup Times: Analysis and Solutions Procedures. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Buyukdagli, O. Metaheuristics for the No-Idle Permutation Flowshop Scheduling Problem. Master Thesis, Yasar University, Bornova, Turkey, 2013. [Google Scholar]
- Ribas, I.; Leisten, R.; Framiñan, J.M. Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454. [Google Scholar] [CrossRef]
- Neufeld, J.S.; Gupta, J.N.D.; Buscher, U. A comprehensive review of flowshop group scheduling literature. Comput. Oper. Res. 2016, 70, 56–74. [Google Scholar] [CrossRef]
- Cepek, O.; Okada, M.; Vlach, M. Minimizing total completion time in a two-machine no-idle flowshop. Res. Rep. 1998, 98, 1–23. [Google Scholar]
- Čepek, O.; Okada, M.; Vlach, M. Note: On the Two-Machine No-Idle Flowshop Problem. Nav. Res. Logist. 2000, 47, 353–358. [Google Scholar] [CrossRef]
- Narain, L.; Bagga, P.C. Flowshop/no-idle scheduling to minimise the mean flowtime. ANZIAM J. 2005, 47, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xing, W.; Bai, F. No-wait flexible flowshop scheduling with no-idle machines. Oper. Res. Lett. 2005, 33, 609–614. [Google Scholar] [CrossRef]
- Tasgetiren, M.F.; Pan, Q.K.; Suganthan, P.N.; Jin Chua, T. A differential evolution algorithm for the no-idle flowshop scheduling problem with total tardiness criterion. Int. J. Prod. Res. 2011, 49, 5033–5050. [Google Scholar] [CrossRef]
- Fatih Tasgetiren, M.; Pan, Q.K.; Suganthan, P.N.; Oner, A. A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion. Appl. Math. Model. 2013, 37, 6758–6779. [Google Scholar] [CrossRef]
- Ren, W.-J.; Pan, Q.-K.; Han, H.-Y. Tabu search algorithm for no-idle flowshop scheduling problems. Comput. Eng. Des. 2010, 31, 5071–5074. [Google Scholar]
- Fatih Tasgetiren, M.; Pan, Q.K.; Suganthan, P.N.; Buyukdagli, O. A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem. Comput. Oper. Res. 2013, 40, 1729–1743. [Google Scholar] [CrossRef]
- Lu, Y.Y. Research on no-idle permutation flowshop scheduling with time-dependent learning effect and deteriorating jobs. Appl. Math. Model. 2016, 40, 3447–3450. [Google Scholar] [CrossRef]
- Pagnozzi, F.; Stützle, T. Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints. Oper. Res. Perspect. 2021, 8, 100180. [Google Scholar]
- Pan, Q.-K.; Ruiz, R. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega 2014, 44, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.L.; Nagano, M.S. Heuristics for the mixed no-idle flowshop with sequence-dependent setup times and total flowtime criterion. Expert Syst. Appl. 2019, 125, 40–54. [Google Scholar] [CrossRef]
- Rossi, F.L.; Nagano, M.S. Heuristics and metaheuristics for the mixed no-idle flowshop with sequence-dependent setup times and total tardiness minimisation. Swarm Evol. Comput. 2020, 55, 100689. [Google Scholar] [CrossRef]
- Rossi, F.L.; Nagano, M.S. Heuristics for the mixed no-idle flowshop with sequence-dependent setup times. J. Oper. Res. Soc. 2019, 1–27. [Google Scholar] [CrossRef]
- Nagano, M.S.; Rossi, F.L.; Martarelli, N.J. High-performing heuristics to minimize flowtime in no-idle permutation flowshop. Eng. Optim. 2019, 51, 185–198. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, L.; Zhang, Y.; Ma, W.; Zhang, C.; Song, H. A hybrid discrete water wave optimization algorithm for the no-idle flowshop scheduling problem with total tardiness criterion. Expert Syst. Appl. 2020, 146, 113166. [Google Scholar] [CrossRef]
- Riahi, V.; Chiong, R.; Zhang, Y. A new iterated greedy algorithm for no-idle permutation flowshop scheduling with the total tardiness criterion. Comput. Oper. Res. 2020, 117, 104839. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, L.; Cao, J.; Tang, J. A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153, 107082. [Google Scholar] [CrossRef]
- Ruiz, R.; Vallada, E.; Fernandez-Martinez, C. Scheduling in flowshops with no-idle machines. In Computational Intelligence in Flow Shop and Job Shop Scheduling; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–51. [Google Scholar]
- Ruiz, R.; Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 2007, 177, 2033–2049. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Osman, I.; Potts, C. Simulated annealing for permutation flow-shop scheduling. Omega 1989, 17, 551–557. [Google Scholar] [CrossRef]
- Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
Number of jobs at hand | |
Number of available machines | |
Job tag and its position index in the sequence vector, i.e., ; | |
Machine tag; | |
Processing time of job on machine | |
Binary decision variable, if job is positioned at index of the vector; , otherwise | |
Integer decision variable, the completion time of the job assigned to position on machine | |
The total flowtime of job |
Algorithm | Parameter | Phase I | Phase II | ||||
---|---|---|---|---|---|---|---|
IG1 | I | II | III | I | IV | V | |
d | 2 | 4 | 6 | 2 | 1 | 3 | |
γ | 20 | 40 | 60 | 20 | 10 | 30 | |
δ | 0.9 | 0.8 | 0.7 | 0.9 | 0.95 | 0.85 | |
ARPD | 0.56 | 1.35 | 1.61 | 0.78 | 2.78 | 1.26 | |
IG2 | I | II | III | I | IV | V | |
d | 2 | 4 | 6 | 2 | 1 | 3 | |
γ | 20 | 40 | 60 | 20 | 10 | 30 | |
δ | 0.9 | 0.8 | 0.7 | 0.9 | 0.95 | 0.85 | |
ARPD | 0.48 | 0.65 | 0.78 | 0.68 | 0.90 | 1.15 | |
IG3 | I | II | III | I | IV | V | |
d | 2 | 4 | 6 | 2 | 1 | 3 | |
γ | 20 | 40 | 60 | 20 | 10 | 30 | |
0.9 | 0.8 | 0.7 | 0.9 | 0.95 | 0.85 | ||
ARPD | 0.32 | 0.99 | 1.02 | 0.38 | 3.92 | 0.88 | |
HIG | I | II | III | I | IV | V | |
d | 2 | 4 | 6 | 2 | 1 | 3 | |
γ | 20 | 40 | 60 | 20 | 10 | 30 | |
δ | 0.9 | 0.8 | 0.7 | 0.9 | 0.95 | 0.85 | |
ARPD | 0.33 | 0.48 | 0.87 | 0.44 | 4.99 | 0.49 |
Instance (m × n) | HTS | IG1 | IG2 | IG3 | HIG |
---|---|---|---|---|---|
9437.0 | 9549.5 | 9401.0 | 9566.5 | 9324.5 | |
17,456.0 | 17,716.5 | 17,616.5 | 17,539.0 | 17,472.5 | |
29,319.0 | 29,412.5 | 29,149.5 | 29,724.5 | 29,148.5 | |
47,719.0 | 46,597.0 | 46,717.5 | 47,199.5 | 45,895.5 | |
58,610.0 | 61,247.0 | 58,375.5 | 58,445.0 | 57,582.5 | |
107,007.0 | 110,308.0 | 105,657.0 | 108,775.5 | 105,555.0 | |
160,401.5 | 162,367.0 | 157,927.0 | 158,705.5 | 155,420.0 | |
214,438.5 | 206,815.5 | 202,818.0 | 207,382.5 | 201,117.5 | |
337,888.5 | 335,717.0 | 330,472.0 | 330,243.5 | 324,920.5 | |
685,369.5 | 690,565.5 | 657,372.5 | 671,582.5 | 656,480.0 | |
1,003,945.5 | 1,006,795.0 | 991,009.0 | 1,011,902.5 | 989,277.5 | |
4,456,166.0 | 4,540,516.5 | 4,449,380.0 | 4,494,197.5 | 4,448,496.5 |
Instance (m × n) | IG1 | IG2 | IG3 | HIG |
---|---|---|---|---|
9239.05 | 9088.05 | 9111.90 | 9031.65 | |
15,238.65 | 15,054.10 | 15,065.25 | 14,999.45 | |
29,966.20 | 29,591.90 | 29,628.70 | 29,422.00 | |
43,076.70 | 42,166.05 | 42,448.70 | 41,957.35 | |
62,506.85 | 60,375.95 | 60,962.05 | 59,921.50 | |
111,451.80 | 108,472.15 | 109,087.45 | 107,926.95 | |
144,552.95 | 141,478.15 | 142,699.50 | 140,742.30 | |
209,197.70 | 204,574.05 | 207,545.50 | 203,718.20 | |
327,279.80 | 320,069.55 | 320,393.40 | 316,219.80 | |
697,101.30 | 674,801.50 | 684,276.40 | 674,297.30 | |
990,265.30 | 965,298.95 | 974,714.40 | 962,675.70 | |
4,764,325.25 | 4,687,959.00 | 4,704,317.20 | 4,680,702.80 |
Workload (n) | Machinery (m) | HTS | IG1 | IG2 | IG3 | HIG |
---|---|---|---|---|---|---|
20 | 5 | 1.21 | 2.41 | 0.82 | 2.60 | 0.00 |
10 | 0.00 | 1.49 | 0.92 | 0.48 | 0.09 | |
20 | 0.58 | 0.91 | 0.00 | 1.98 | 0.00 | |
Overall | 0.60 | 1.60 | 0.58 | 1.68 | 0.03 | |
50 | 5 | 3.97 | 1.53 | 1.79 | 2.84 | 0.00 |
10 | 1.78 | 6.36 | 1.38 | 1.50 | 0.00 | |
20 | 1.38 | 4.50 | 0.10 | 3.05 | 0.00 | |
Overall | 2.38 | 4.13 | 1.09 | 2.46 | 0.00 | |
100 | 5 | 3.21 | 4.47 | 1.61 | 2.11 | 0.00 |
10 | 6.62 | 2.83 | 0.85 | 3.12 | 0.00 | |
20 | 3.99 | 3.32 | 1.71 | 1.64 | 0.00 | |
Overall | 4.61 | 3.54 | 1.39 | 2.29 | 0.00 | |
200 | 10 | 4.40 | 5.19 | 0.14 | 2.30 | 0.00 |
20 | 1.48 | 1.77 | 0.18 | 2.29 | 0.00 | |
Overall | 2.94 | 3.48 | 0.16 | 2.29 | 0.00 | |
500 | 20 | 0.17 | 2.07 | 0.02 | 1.03 | 0.00 |
Machinery (m) | Workload (n) | HTS | IG1 | IG2 | IG3 | HIG |
---|---|---|---|---|---|---|
5 | 20 | 1.21 | 2.41 | 0.82 | 2.60 | 0.00 |
50 | 3.97 | 1.51 | 1.79 | 2.84 | 0.00 | |
100 | 3.21 | 4.47 | 1.61 | 2.11 | 0.00 | |
Overall | 2.79 | 2.80 | 1.40 | 2.51 | 0.00 | |
10 | 20 | 0.00 | 1.49 | 0.92 | 0.48 | 0.09 |
50 | 1.78 | 6.36 | 1.38 | 1.50 | 0.00 | |
100 | 6.62 | 2.83 | 0.85 | 3.12 | 0.00 | |
200 | 4.40 | 5.19 | 0.14 | 2.30 | 0.00 | |
Overall | 3.20 | 3.97 | 0.81 | 1.84 | 0.02 | |
100 | 20 | 0.58 | 0.91 | 0.00 | 1.98 | 0.00 |
50 | 1.38 | 4.50 | 0.10 | 3.05 | 0.00 | |
100 | 3.99 | 3.32 | 1.71 | 1.64 | 0.00 | |
200 | 1.48 | 1.77 | 0.18 | 2.29 | 0.00 | |
500 | 0.17 | 2.07 | 0.02 | 1.03 | 0.00 | |
Overall | 1.26 | 2.09 | 0.33 | 1.66 | 0.00 |
Instance | Average | StD | DoF | T Stat | One-Tail | Two-Tail | ||
---|---|---|---|---|---|---|---|---|
t-Critical | p-Value | t-Critical | p-Value | |||||
HIG Vs. HTS | 7255.58 | 8435.13 | 11 | 2.86 | 1.79 | 0.0078 | 2.20 | 0.0157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-Y.; Lin, S.-W.; Pourhejazy, P.; Ying, K.-C.; Lin, Y.-Z. No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework. Mathematics 2021, 9, 1335. https://doi.org/10.3390/math9121335
Cheng C-Y, Lin S-W, Pourhejazy P, Ying K-C, Lin Y-Z. No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework. Mathematics. 2021; 9(12):1335. https://doi.org/10.3390/math9121335
Chicago/Turabian StyleCheng, Chen-Yang, Shih-Wei Lin, Pourya Pourhejazy, Kuo-Ching Ying, and Yu-Zhe Lin. 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework" Mathematics 9, no. 12: 1335. https://doi.org/10.3390/math9121335
APA StyleCheng, C. -Y., Lin, S. -W., Pourhejazy, P., Ying, K. -C., & Lin, Y. -Z. (2021). No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework. Mathematics, 9(12), 1335. https://doi.org/10.3390/math9121335