Next Article in Journal
Energy and Personality: A Bridge between Physics and Psychology
Previous Article in Journal
Second-Order Weak Approximations of CKLS and CEV Processes by Discrete Random Variables
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus

by
Waewta Luangboon
1,
Kamsing Nonlaopon
1,*,
Jessada Tariboon
2 and
Sotiris K. Ntouyas
3,4
1
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2
Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
3
Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
4
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(12), 1338; https://doi.org/10.3390/math9121338
Submission received: 13 May 2021 / Revised: 4 June 2021 / Accepted: 7 June 2021 / Published: 9 June 2021

Abstract

:
In this paper, we establish several new ( p , q ) -integral identities involving ( p , q ) -integrals by using the definition of a ( p , q ) -derivative. These results are then used to derive ( p , q ) -integral Simpson- and Newton-type inequalities involving convex functions. Moreover, some examples are given to illustrate the investigated results.

1. Introduction

Mathematical inequalities, as critical tools, are employed in both areas of pure and applied mathematics [1,2,3,4,5,6,7,8]. These inequalities have been continuously improved because of their wide applications in those fields. A convex function has attracted interest because it can be applied in various techniques by many researchers (see [9,10,11,12,13,14,15,16] for more details and the references cited therein).
A convex function is defined as follows: A function f : [ a , b ] R is convex if the inequality
f t x + ( 1 t ) y t f ( x ) + ( 1 t ) f ( y )
holds for all x , y [ a , b ] and t [ 0 , 1 ] .
In recent years, convex functions in mathematical inequalities have attracted considerable attention. The most famous inequalities used with the convex functions are Simpson- and Newton-type inequalities (see [17,18,19,20,21,22,23,24,25] for more details).
1.
Simpson’s quadrature (Simpson’s 1 / 3 rule) is formulated as follows:
a b f ( x ) d x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) ,
see [19] for more details.
2.
Simpson’s second or Newton–Cotes quadrature (Simpson’s 3 / 8 rule) is formulated as follows:
a b f ( x ) d x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ,
see [23] for more details.
The error estimations of Simpson- and Newton-type inequalities are as follows:
Theorem 1
(Ref. [19]). If f : [ a , b ] R is a four times continuously differentiable function on ( a , b ) and
f ( 4 ) = sup x ( a , b ) | f ( 4 ) ( x ) | < ,
then
1 6 f ( a ) + 4 f a + b 2 + f ( b ) 1 b a a b f ( x ) d x   1 2880 f ( 4 ) ( b a ) 5 .
Theorem 2
(Ref. [23]). If f : [ a , b ] R is a four times continuously differentiable function on ( a , b ) and
f ( 4 ) = sup x ( a , b ) | f ( 4 ) ( x ) | < ,
then
1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) 1 b a a b f ( x ) d x 1 6480 f ( 4 ) ( b a ) 5 .
So far, Simpson- and Newton-type inequalities have been studied in the form of a convex function using quantum calculus by many researchers, and the results of quantum calculus can be found in [26,27,28,29,30,31,32], and the references cited therein.
Quantum calculus or q-calculus is the study of calculus with no limits, beginning by studying Newton’s infinite series, and was revealed by Euler (1707–1783). Then, many researchers, such as Gudermann (1798–1897), Weierstrass (1815–1897), and Heaviside (1850–1925) studied the properties of q-series. In 1910, the q-derivative and q-integral of a continuous function on the interval ( 0 , ) , based on the q-calculus of an infinite series, were defined by Jackson [33]. In q-calculus, the main objective is to obtain the q-analoques of mathematical objects recaptured by taking q 1 . In recent years, the q-calculus has attracted interest because of its various applications in mathematics and physics (see [34,35,36,37,38,39,40] for more details and the references cited therein).
Tariboon and Ntouyas [41] defined new q-derivatives and q-integrals of a continuous function on a finite interval. Recently, such definitions have been applied in various inequalities, such as Hermite–Hadamard inequalities [42,43,44,45], Hanh integral inequalities [46], Hermite–Hadamard-like inequalities [47], Ostrowski inequalities [48], Fejér-type inequalities [49], and Simpson- and Newton-type inequalities [50], and the references cited therein.
Another generalization of q-calculus on the interval ( 0 , ) is well-known as post-quantum calculus or ( p , q ) -calculus. The ( p , q ) -calculus includes two-parameter quantum calculus (p and q-numbers) which are independent. In ( p , q ) -calculus, we obtain the q-calculus formula for the case of p = 1 , and then get the classical formula for the case of q 1 . This generalization was first introduced by Chakrabarti and Jagannathan [51] in 1991. Then, Tunç et al. [52,53] presented new ( p , q ) -derivatives and q-integrals of a continuous function on a finite interval in 2016. Based on the definitions of ( p , q ) -calculus, many literatures have been published by many researchers (see [54,55,56,57,58] and the references cited therein).
In 2020, Budak et al. [50] presented Simpson- and Newton-type inequalities for convex functions via q-calculus. In this paper, we establish some new integral inequalities of Simpson- and Newton-type inequalities for convex functions via ( p , q ) -calculus to generalize and extend the results given in the above-mentioned report. Furthermore, we give some examples to investigate the main results.
The rest of the paper is organized as follows: In Section 2, we recall some basic knowledge and notations used in the next part. In Section 3, we give Simpson-type inequalities for a convex function via the ( p , q ) -calculus. In Section 4, we give Newton-type inequalities for convex function via ( p , q ) -calculus. In Section 5, we show some examples to illustrate the investigated results. In the final part, we summarize the conclusions.

2. Preliminaries

In this section, we give basic knowledge used in our work. Throughout this paper, let [ a , b ] R be an interval, and let a < b and 0 < q < p 1 be constants.
Definition 1
(Refs. [52,53]). Suppose that f : [ a , b ] R is a continuous function. Then, the ( p , q ) a -derivative of function f at t [ a , b ] is defined by
a D p , q f ( t ) =   f p t + ( 1 p ) a f q t + ( 1 q ) a ( p q ) ( t a ) , i f t a ; lim t a a D p , q f ( t ) , i f t = a .
The function f is said to be a ( p , q ) a -differentiable function on [ a , b ] if a D p , q f ( t ) exists for all t [ a , b ] .
In Definition 1, if p = 1 , then a D 1 , q f ( t ) = a D q f ( t ) , and Equation (1) reduces to
a D q f ( t ) =   f ( t ) f q t + ( 1 q ) a ( 1 q ) ( t a ) , i f t a ; lim t a a D q f ( t ) , i f t = a ,
which is the q a -derivative of function f defined in [ a , b ] (see [59,60,61] for more details). In addition, if a = 0 , then 0 D q f ( t ) = D q f ( t ) , and Equation (2) reduces to
D q f ( t ) =   f ( t ) f q t ( 1 q ) t , i f t a ; lim t 0 D q f ( t ) , i f t = a ,
which is the q a -derivative of function f defined in [ 0 , b ] (see [62] for more details).
Definition 2
(Ref. [63]). Suppose that f : [ a , b ] R is a continuous function. Then, the ( p , q ) b -derivative of function f at t [ a , b ] is defined by
b D p , q f ( t ) =   f q t + ( 1 q ) b f p t + ( 1 p ) b ( p q ) ( b t ) , i f t b ; lim t b b D p , q f ( t ) , i f t = b .
The function f is said to be a ( p , q ) b -differentiable function on [ a , b ] if b D p , q f ( t ) exists for all t [ a , b ] .
In Definition 2, if p = 1 , then b D 1 , q f ( t ) = b D q f ( t ) , and Equation (4) reduces to
b D q f ( t ) =   f q t + ( 1 q ) b f t ( 1 q ) ( b t ) , i f t b ; lim t b b D q f ( t ) , i f t = b ,
which is the q b -derivative of function f defined in [ a , b ] (see [64,65] for more details).
Definition 3
(Refs. [52,53]). Suppose that f : [ a , b ] R is a continuous function. Then, the ( p , q ) a -integral of function f at t [ a , b ] is defined by
a b f ( t ) a d p , q t = ( p q ) ( b a ) j = 0 q j p j + 1 f q j p j + 1 b + 1 q j p j + 1 a .
The function f is said to be a ( p , q ) a -integrable function on [ a , b ] if a b f ( t ) a d p , q t exists for all t [ a , b ] .
If a = 0 , then Equation (6) is the ( p , q ) -integral in [ 0 , b ] , which can be expressed as:
0 b f ( t ) d p , q t = ( p q ) b j = 0 q j p j + 1 f q j p j + 1 b .
Definition 4
(Ref. [63]). ] Suppose that f : [ a , b ] R is a continuous function. Then, the ( p , q ) b -integral of function f at t [ a , b ] is defined by
a b f ( t ) b d p , q t = ( p q ) ( b a ) j = 0 q j p j + 1 f q j p j + 1 a + 1 q j p j + 1 b .
The function f is said to be a ( p , q ) b -integrable function on [ a , b ] if a b f ( t ) b d p , q t exists for all t [ a , b ] .
If a = 0 , then Equation (8) is the ( p , q ) b -integral in [ 0 , b ] , which can be expressed as:
0 b f ( x ) b d p , q x = ( p q ) b j = 0 q j p j + 1 f 1 q j p j + 1 b .
Theorem 3
(Ref. [63]). If f : [ a , b ] R is a convex differentiable function on [ a , b ] , then the ( p , q ) b -Hermite –Hadamard inequalities are as follows:
f p a + q b p + q   1 p ( b a ) p a + ( 1 p ) b b f ( t ) b d p , q t q f ( a ) + p f ( b ) p + q .
Theorem 4
(Ref. [53]). If f , g : [ a , b ] R are continuous functions and r , s > 0 with 1 / r + 1 / s = 1 , then
a b f ( t ) g ( t ) a d p , q t a b f ( t ) s a d p , q t 1 / s a b f ( t ) r a d p , q t 1 / r .
Lemma 1
(Ref. [52]). For α R { 1 } , the following expression holds:
a b x a α a d p , q x = p q p α + 1 q α + 1 ( b a ) α + 1 .

3. Simpson-Type inequalities for ( p , q ) -Calculus

Theorem 5.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If b D p , q f is a continuous function and a ( p , q ) b -integrable function on [ a , b ] , then
( b a ) 0 1 ϕ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t = 1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) ,
where
ϕ ( t ) =   q t 1 6 , f o r 0 t < 1 2 ; q t 5 6 , f o r 1 2 t 1 .
Proof. 
From basic properties of the ( p , q ) -integral and the definition of ϕ ( t ) , it follows that
0 1 ϕ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t = 2 3 0 1 2 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 0 1 q t b D p , q f ( t a + ( 1 t ) b ) d p , q t 5 6 0 1 b D p , q f ( t a + ( 1 t ) b ) d p , q t .
By Definition 2, we have
b D p , q f ( t a + ( 1 t ) b ) = f ( q ( t a + ( 1 t ) b ) + ( 1 q ) b ) f ( p ( t a + ( 1 t ) b ) + ( 1 p ) b ) ( p q ) ( b ( t a + ( 1 t ) b ) ) = f ( q t a + ( 1 q t ) b ) f ( p t a + ( 1 p t ) b ) ( p q ) ( b a ) t .
Then, we obtain
0 1 2 b D p , q f ( t a + ( 1 t ) b ) d p , q t = 0 1 2 f ( q t a + ( 1 q t ) b ) f ( p t a + ( 1 p t ) b ) ( p q ) ( b a ) t d p , q t = 1 b a j = 0 f q j + 1 2 p j + 1 a + 1 q j + 1 2 p j + 1 b 1 b a j = 0 f q j 2 p j a + 1 q j 2 p j b = 1 b a f ( b ) f a + b 2 .
Similarly, we obtain
0 1 q t b D p , q f ( t a + ( 1 t ) b ) d p , q t = 0 1 q f ( q t a + ( 1 q t ) b ) f ( p t a + ( 1 p t ) b ) ( p q ) ( b a ) d p , q t = 1 b a p q p j = 0 q j p j f q j p j a + 1 q j p j b f ( a ) b a = 1 p ( b a ) 2 p a + ( 1 p ) b b f ( x ) b d p , q x f ( a ) b a .
Finally, we observe that
0 1 b D p , q f ( t a + ( 1 t ) b ) d p , q t = f ( b ) f ( a ) b a .
Substituting Equations (15)–(17) in Equation (14), we have
0 1 ϕ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t = 2 3 1 b a f ( b ) f a + b 2 + 1 p ( b a ) 2 p a + ( 1 p ) b b f ( x ) b d p , q x f ( a ) b a 5 6 f ( b ) f ( a ) b a = 1 p ( b a ) 2 p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) .
Multiplying the above equality with b a , we obtain the required result. The proof is completed. □
Remark 1.
If p = 1 , then Equation (13) reduces to
( b a ) 0 1 ϕ ( t ) b D q f ( t a + ( 1 t ) b ) d q t = 1 b a a b f ( x ) b d q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) ,
where
ϕ ( t ) =   q t 1 6 , f o r 0 t < 1 2 ; q t 5 6 , f o r 1 2 t 1 ,
which appeared in [50].
Theorem 6.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If | b D p , q f | is a convex function and a ( p , q ) b -integrable function on [ a , b ] , then
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) ( b a ) Λ 1 ( p , q ) + Λ 3 ( p , q ) b D p , q f ( a ) + Λ 2 ( p , q ) + Λ 4 ( p , q ) b D p , q f ( b ) ,
where Λ i ( p , q ) , i = 1 , 2 , 3 , 4 are defined by
Λ 1 ( p , q ) = 0 1 2 q t 1 6 t d p , q t =   p 2 2 p q 2 q 2 24 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 1 3 ; 18 q 4 + 18 p q 3 9 p 2 q 2 + 2 q 2 + 2 p q 2 q + 2 p 2 2 p 216 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 1 3 q < 1 , Λ 2 ( p , q ) = 0 1 2 q t 1 6 ( 1 t ) d p , q t =   2 p 3 p 2 + 2 p q 2 p 2 q + 2 q 2 2 p q 2 4 q 3 24 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 1 3 ; 36 q 5 + 18 p q 4 6 q 4 + 18 p 2 q 3 + 6 p q 3 12 q 3 + 33 p 2 q 2 18 p 3 q 2 12 p q 2 2 q 2 2 p q + 2 q 2 p 2 + 2 p 216 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 1 3 q < 1 ,
Λ 3 ( p , q ) = 1 2 1 q t 5 6 t d p , q t =   15 p 2 6 p q 6 q 2 24 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 5 6 ; 18 q 4 + 18 p q 3 225 p 2 q 2 + 250 q 2 + 250 p q 250 q + 250 p 2 250 p 216 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 5 6 q < 1 , Λ 4 ( p , q ) = 1 2 1 q t 5 6 ( 1 t ) d p , q t =   10 p 3 15 p 2 + 2 p 2 q + 6 p q + 2 p q 2 + 6 q 2 8 q 3 24 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 5 6 ; 270 p q 4 + 282 q 4 270 p 2 q 3 + 582 p q 3 300 q 3 270 p 3 q 2 + 825 p 2 q 2 300 p q 2 250 q 2 250 p 2 + 250 p 216 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 5 6 q < 1 .
Proof. 
Taking the absolute value of both sides of Theorem 5, we observe that
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) =   ( b a ) 0 1 ϕ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t = ( b a ) 0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t ( b a ) 0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t .
If the first ( p , q ) -integral on the right side of the inequality is used to consider the convexity of | b D p , q f | , from the case when a = 0 of Lemma 1, then we obtain
0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t   b D p , q f ( a ) 0 1 2 q t 1 6 t d p , q t +   b D p , q f ( b ) 0 1 2 q t 1 6 ( 1 t ) d p , q t = Λ 1 ( p , q ) b D p , q f ( a ) + Λ 2 ( p , q ) b D p , q f ( b ) .
Similarly, we have
1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t   b D p , q f ( a ) 1 2 1 q t 5 6 t d p , q t +   b D p , q f ( b ) 1 2 1 q t 5 6 ( 1 t ) d p , q t = Λ 3 ( p , q ) b D p , q f ( a ) + Λ 4 ( p , q ) b D p , q f ( b ) .
Substituting Equations (20) and (21) into Equation (19), we obtain the required result. □
Remark 2.
If p = 1 , then Equation (18) reduces to
1 b a a b f ( x ) b d q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) ( b a ) Λ 1 ( q ) + Λ 3 ( q ) b D q f ( a ) + Λ 2 ( q ) + Λ 4 ( q ) b D q f ( b ) ,
where Λ i ( q ) , i = 1 , 2 , 3 , 4 are defined by
Λ 1 ( q ) = 0 1 2 q t 1 6 t d q t =   1 2 q 2 q 2 24 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 1 3 ; 18 q 2 + 18 q 7 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 1 3 q < 1 , Λ 2 ( q ) = 0 1 2 q t 1 6 ( 1 t ) d q t =   1 4 q 3 24 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 1 3 ; 36 q 3 + 12 q 2 + 12 q + 1 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 1 3 q < 1 , Λ 3 ( q ) = 1 2 1 q t 5 6 t d q t =   15 6 q 6 q 2 24 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 5 6 ; 18 q 2 + 18 q + 25 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 5 6 q < 1 , Λ 4 ( q ) = 1 2 1 q t 5 6 ( 1 t ) d q t =   8 q 3 + 8 q 2 + 8 q 5 24 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 5 6 ; 5 + 12 q + 12 q 2 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 5 6 q < 1 ,
which appeared in [50]. Moreover, if q 1 , then Equation (22) reduces to
1 6 f ( a ) + 4 f a + b 2 + f ( b ) 1 b a a b f ( x ) d x   5 ( b a ) 72 f ( a )   +   f ( b ) ,
which appeared in [20].
Theorem 7.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If | b D p , q f | is a convex function and a ( p , q ) b -integrable function on [ a , b ] , and r , s > 1 with 1 / r + 1 / s = 1 , then
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) 1 6 ( b a ) 2 1 1 / s 1 4 ( p + q ) b D p , q f ( a ) r + 2 p + 2 q 1 4 ( p + q ) b D p , q f ( b ) r 1 / r + ( 1 2 s 1 ) 1 / s 3 4 ( p + q ) b D p , q f ( a ) r + 2 p + 2 q 3 4 ( p + q ) b D p , q f ( b ) r 1 / r .
Proof. 
Taking the absolute value of both sides of Theorem 5, we have
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) =   ( b a ) 0 1 ϕ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t , = ( b a ) 0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t ( b a ) 0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t .
By Theorem 4, we have
0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t 0 1 2 q t 1 6 s d p , q t 1 / s 0 1 2 b D p , q f ( t a + ( 1 t ) b ) r d p , q t 1 / r 0 1 2 q t 1 6 s d p , q t 1 / s × b D p , q f ( a ) r 0 1 2 t d p , q t + b D p , q f ( b ) r 0 1 2 ( 1 t ) d p , q t 1 / r .
Using Equation (7), we obtain
0 1 2 q t 1 6 s d p , q t = ( p q ) 1 2 j = 0 q j p j + 1 q j + 1 2 p j + 1 1 6 s 1 2 ( p q ) j = 0 q j p j + 1 1 2 1 6 s = 1 2 · 3 s .
Calculating the ( p , q ) -integral in Equation (25) and substituting the inequality Equation (26) into Equation (25), we have
0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t 1 2 · 3 s 1 / s 1 4 ( p + q ) b D p , q f ( a ) r + 2 p + 2 q 1 4 ( p + q ) b D p , q f ( b ) r 1 / r .
Similarly, we have
1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t 1 2 s 1 6 s 1 / s 3 4 ( p + q ) b D p , q f ( a ) r + 2 p + 2 q 3 4 ( p + q ) b D p , q f ( b ) r 1 / r .
Substituting Equations (27) and (28) into Equation (24), we obtain the required result. □
Remark 3.
If p = 1 , then Equation (23) reduces to
1 b a a b f ( x ) b d q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) 1 6 ( b a ) 2 1 1 / s 1 4 ( 1 + q ) b D q f ( a ) r + 2 q + 1 4 ( 1 + q ) b D q f ( b ) r 1 / r + ( 1 2 s 1 ) 1 / s 3 4 ( 1 + q ) b D q f ( a ) r + 2 q 1 4 ( 1 + q ) b D q f ( b ) r 1 / r .
Theorem 8.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If | b D p , q | r , r 1 is a convex function and a ( p , q ) b -integrable function on [ a , b ] , then
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) ( b a ) Λ 5 ( p , q ) 1 1 / r Λ 1 ( p , q ) b D p , q f ( a ) r + Λ 2 ( p , q ) b D p , q f ( b ) r 1 / r + ( b a ) Λ 6 ( p , q ) 1 1 / r Λ 3 ( p , q ) b D p , q f ( a ) r + Λ 4 ( p , q ) b D p , q f ( b ) r 1 / r ,
where Λ i ( p , q ) , i = 1 , 2 , 3 , 4 are given in Theorem 6 and Λ j ( p , q ) , j = 5 , 6 are defined by
Λ 5 ( p , q ) = 0 1 2 q t 1 6 d p , q t =   p 2 q 12 ( p + q ) , f o r 0 < q < 1 3 ; 6 q 2 3 p q + 2 q + 2 p 2 36 q ( p + q ) , f o r 1 3 q < 1 ,
and
Λ 6 ( p , q ) = 1 2 1 q t 5 6 d p , q t =   5 p 4 q 12 ( p + q ) , f o r 0 < q < 5 6 ; 45 p q + 50 q + 50 p 50 36 q ( p + q ) , f o r 5 6 q < 1 .
Proof. 
Using Theorem 5 and the Hölder inequality, we have
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) =   ( b a ) 0 1 ϕ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t , = ( b a ) 0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t ( b a ) 0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) d p , q t ( b a ) 0 1 2 q t 1 6 d p , q t 1 1 / r 0 1 2 q t 1 6 b D p , q f ( t a + ( 1 t ) b ) r d p , q t 1 / r + 1 2 1 q t 5 6 a d p , q t 1 1 / r 1 2 1 q t 5 6 b D p , q f ( t a + ( 1 t ) b ) r d p , q t 1 / r ( b a ) 0 1 2 q t 1 6 d p , q t 1 1 / r × b D p , q f ( a ) r 0 1 2 q t 1 6 t d p , q t + b D p , q f ( b ) r 0 1 2 q t 1 6 ( 1 t ) d p , q t 1 / r + ( b a ) 1 2 1 q t 5 6 d p , q t 1 1 / r × b D p , q f ( a ) r 1 2 1 q t 5 6 t d p , q t + b D p , q f ( b ) r 1 2 1 q t 5 6 ( 1 t ) d p , q t 1 / r = ( b a ) Λ 5 ( p , q ) 1 1 / r Λ 1 ( p , q ) b D p , q f ( a ) r + Λ 2 ( p , q ) b D p , q f ( b ) r 1 / r + ( b a ) Λ 6 ( p , q ) 1 1 / r Λ 3 ( p , q ) b D p , q f ( a ) r + Λ 4 ( p , q ) b D p , q f ( b ) r 1 / r .
Therefore, the proof is completed. □
Remark 4.
If p = 1 , then Equation (29) reduces to
1 b a a b f ( x ) b d q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) ( b a ) Λ 5 ( q ) 1 1 / r Λ 1 ( q ) b D q f ( a ) r + Λ 2 ( q ) b D q f ( b ) r 1 / r + ( b a ) Λ 6 ( q ) 1 1 / r Λ 3 ( q ) b D q f ( a ) r + Λ 4 ( q ) b D q f ( b ) r 1 / r ,
where Λ i ( q ) , i = 1 , 2 , 3 , 4 are given in Remark 2 and Λ j ( q ) , j = 5 , 6 are defined by
Λ 5 ( q ) = 0 1 2 q t 1 6 d q t =   1 2 q 12 ( 1 + q ) , f o r 0 < q < 1 3 ; 6 q 1 36 ( 1 + q ) , f o r 1 3 q < 1 ,
and
Λ 6 ( q ) = 1 2 1 q t 5 6 d q t =   5 4 q 12 ( 1 + q ) , f o r 0 < q < 5 6 ; 5 36 ( 1 + q ) , f o r 5 6 q < 1 ,
which appeared in [50]. Moreover, if q 1 , then Equation (30) reduces to
1 6 f ( a ) + 4 f a + b 2 + f ( b ) 1 b a a b f ( t ) d t 5 1 1 / r 72 ( b a ) 29 18 b D q f ( a ) r + 61 18 b D q f ( b ) r 1 / r × 61 18 b D q f ( a ) r + 29 18 b D q f ( b ) r 1 / r ,
which appeared in [20].

4. Newton-Type Inequalities for ( p , q ) -Calculus

Theorem 9.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If b D p , q f is a continuous function and a ( p , q ) b -integrable function on [ a , b ] , then -0.5cm0cm
( b a ) 0 1 ψ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t = 1 p ( b a ) a p b + ( 1 p ) a f ( x ) a d p , q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ,
where
ψ ( t ) =   q t 1 8 , f o r 0 t < 1 3 ; q t 1 2 , f o r 1 3 t < 2 3 ; q t 7 8 , f o r 2 3 t 1 .
Proof. 
From basic properties of the ( p , q ) -integral and the definition of ψ ( t ) , it follows that
0 1 ψ ( t ) b D p , q f ( t a + ( 1 t ) b ) d p , q t = 3 8 0 1 3 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 0 2 3 b D p , q f ( t a + ( 1 t ) b ) d p , q t + 0 1 q t 7 8 b D p , q f ( t a + ( 1 t ) b ) d p , q t .
The rest of this proof is similar to that of Theorem 5. □
Remark 5.
If p = 1 , then Equation (31) reduces to
( b a ) 0 1 ψ ( t ) b D q f ( t a + ( 1 t ) b ) d q t = 1 b a a b f ( x ) a d p , q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ,
where
ψ ( t ) =   q t 1 8 , f o r 0 t < 1 3 ; q t 1 2 , f o r 1 3 t < 2 3 ; q t 7 8 , f o r 2 3 t 1 ,
which appeared in [50].
Theorem 10.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If | b D p , q f | is a convex function and a ( p , q ) b -integrable function on [ a , b ] , then
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ( b a ) ψ 1 ( p , q ) + ψ 3 ( p , q ) + ψ 5 ( p , q ) b D p , q f ( a ) +   ψ 2 ( p , q ) + ψ 4 ( p , q ) + ψ 6 ( p , q ) b D p , q f ( b ) ,
where ψ i ( p , q ) , i = 1 , 2 , , 6 are defined by
ψ 1 ( p , q ) = 0 1 3 q t 1 8 t d p , q t =   3 p 2 5 p q 5 q 2 216 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 3 8 ; 160 q 4 + 160 p q 3 96 p 2 q 2 + 27 q 2 + 27 p q 27 q + 27 p 2 27 p 6912 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 3 8 q < 1 , ψ 2 ( p , q ) = 0 1 3 q t 1 8 ( 1 t ) d p , q t =   9 p 3 3 p 2 6 p 2 q + 5 p q 6 p q 2 + 5 q 2 15 q 3 216 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 3 8 ; 480 q 5 + 192 p q 4 + 56 q 4 + 192 p 2 q 3 + 272 p q 3 216 q 3 288 p 3 q 2 + 528 p 2 q 2 216 p q 2 27 q 2 + 216 p 3 q 216 p 2 q 27 p q + 27 q 27 p 2 + 27 p 6912 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 3 8 q < 1 , ψ 3 ( p , q ) = 1 3 2 3 q t 1 2 t d p , q t =   9 p 2 5 p q 5 q 2 54 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 3 4 ; 6 q 4 + 6 p q 3 30 p 2 q 2 + 27 q 2 + 27 p q 27 q + 27 p 2 27 p 108 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 3 4 q < 1 ,
ψ 4 ( p , q ) = 1 3 2 3 q t 1 2 ( 1 t ) d p , q t =   9 p 3 9 p 2 + 5 p q + 5 q 2 9 q 3 54 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 3 4 ; 6 q 5 48 p q 4 + 48 q 4 48 p 2 q 3 + 102 p q 3 54 q 3 54 p 3 q 2 + 138 p 2 q 2 54 p q 2 27 q 2 + 54 p 3 q 54 p 2 q 27 p q + 27 q 27 p 2 + 27 p 108 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 3 4 q < 1 , ψ 5 ( p , q ) = 1 3 1 q t 7 8 t d p , q t =   105 p 2 47 p q 47 q 2 216 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 7 8 ; 224 q 4 + 224 p q 3 8736 p 2 q 2 + 9261 q 2 + 9261 p q 9261 q + 9261 p 2 9261 p 6912 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 7 8 q < 1 , ψ 6 ( p , q ) = 2 3 1 q t 7 8 ( 1 t ) d p , q t =   63 p 3 105 p 2 + 6 p 2 q + 47 p q + 6 p q 2 + 47 q 2 57 q 3 216 ( p + q ) ( p 2 + p q + q 2 ) , f o r 0 < q < 7 8 ; 96 q 5 10176 p q 4 + 10360 q 4 10176 p 2 q 3 + 20944 p q 3 10584 q 3 10080 p 3 q 2 + 29904 p 2 q 2 10584 p q 2 9261 q 2 + 10584 p 3 q 10584 p 2 q 9261 p q + 9261 q 9261 p 2 + 9261 p 6912 q 2 ( p + q ) ( p 2 + p q + q 2 ) , f o r 7 8 q < 1 .
Proof. 
The proof of Theorem 10 is similar to that of Theorem 6 and is omitted. □
Remark 6.
If p = 1 , then Equation (32) reduces to -0.5cm0cm
1 b a a b f ( x ) b d q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ( b a ) ψ 1 ( q ) + ψ 3 ( q ) + ψ 5 ( q ) b D q f ( a ) + ψ 2 ( q ) + ψ 4 ( q ) + ψ 6 ( q ) b D q f ( b ) ,
where ψ i ( q ) , i = 1 , 2 , , 6 are defined by
ψ 1 ( q ) = 0 1 3 q t 1 8 t d q t =   3 5 q 5 q 2 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 3 8 ; 160 q 2 + 160 q 69 6912 ( 1 + q ) ( 1 + q + q 2 ) , f o r 3 8 q < 1 , ψ 2 ( q ) = 0 1 3 q t 1 8 ( 1 t ) d q t =   6 q q 2 15 q 3 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 3 8 ; 480 q 3 + 248 q 2 + 248 q 3 6912 ( 1 + q ) ( 1 + q + q 2 ) , f o r 3 8 q < 1 ,
ψ 3 ( q ) = 1 3 2 3 q t 1 2 t d q t =   9 5 q 5 q 2 54 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 3 4 ; 6 q 2 + 6 q 3 108 ( 1 + q ) ( 1 + q + q 2 ) , f o r 3 4 q < 1 , ψ 4 ( q ) = 1 3 2 3 q t 1 2 ( 1 t ) d q t =   5 q + 5 q 2 9 q 3 54 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 3 4 ; 6 q 3 + 3 108 ( 1 + q ) ( 1 + q + q 2 ) , f o r 3 4 q < 1 , ψ 5 ( q ) = 1 3 1 q t 7 8 t d q t =   105 47 q 47 q 2 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 7 8 ; 224 q 2 + 224 q + 525 6912 ( 1 + q ) ( 1 + q + q 2 ) , f o r 7 8 q < 1 , ψ 6 ( q ) = 2 3 1 q t 7 8 ( 1 t ) d q t =   42 + 53 q + 53 q 2 57 q 3 216 ( 1 + q ) ( 1 + q + q 2 ) , f o r 0 < q < 7 8 ; 96 q 3 + 184 q 2 + 184 q 21 6912 ( 1 + q ) ( 1 + q + q 2 ) , f o r 7 8 q < 1 ,
which appeared in [50].
Moreover, if q 1 , then Equation (33) reduces to
1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) 1 b a a b f ( x ) d x 25 ( b a ) 576 f ( a ) + f ( b ) ,
which appeared in [66].
Theorem 11.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If | b D p , q f | is a convex function and a ( p , q ) b -integrable function on [ a , b ] , and r , s > 1 with 1 / r + 1 / s = 1 , then
1 p ( b a ) a p b + ( 1 p ) a f ( x ) b d p , q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ( b a ) 5 s 3 · 24 s 1 / s 1 9 ( p + q ) b D p , q f ( a ) r + 3 p + 3 q 1 9 ( p + q ) b D p , q f ( b ) r 1 / r + 1 3 · 6 s 1 / s 3 9 ( p + q ) b D p , q f ( a ) r + 3 p + 3 q 3 9 ( p + q ) b D p , q f ( b ) r 1 / r + 3 s + 1 2 · 5 s 3 · 24 s 1 / s 5 9 ( p + q ) b D p , q f ( a ) r + 3 p + 3 q 5 9 ( p + q ) b D p , q f ( b ) r 1 / r .
Proof. 
The proof of Theorem 11 is similar to that of Theorem 7. Hence it is omitted. □
Remark 7.
If p = 1 , then Equation (34) reduces to
1 b a a b f ( x ) b d q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ( b a ) 5 s 3 · 24 s 1 / s 1 9 ( 1 + q ) b D q f ( a ) r + 3 q + 2 9 ( 1 + q ) b D q f ( b ) r 1 / r + 1 3 · 6 s 1 / s 3 9 ( 1 + q ) b D q f ( a ) r + 3 q 9 ( 1 + q ) b D q f ( b ) r 1 / r + 3 s + 1 2 · 5 s 3 · 24 s 1 / s 5 9 ( 1 + q ) b D q f ( a ) r + 3 q 2 9 ( 1 + q ) b D q f ( b ) r 1 / r .
Moreover, if q 1 , then Equation (35) reduces to
1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) 1 b a a b f ( x ) d x b a 3 5 s 3 · 24 s 1 / s f ( a ) r + 5 f ( b ) r 6 1 / r + 1 3 · 6 s 1 / s f ( a ) r + f ( b ) r 2 1 / r + 3 s + 1 2 · 5 s 3 · 24 s 1 / s 5 f ( a ) r + f ( b ) r 6 1 / r .
Theorem 12.
Let f : [ a , b ] R be a ( p , q ) b -differentiable function on ( a , b ) . If | b D p , q f | r , r 1 is a convex function and a ( p , q ) b -integrable function on [ a , b ] , then
1 p ( b a ) a p b + ( 1 p ) a f ( x ) b d p , q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ( b a ) ψ 7 ( p , q ) 1 1 / r ψ 1 ( p , q ) b D p , q f ( a ) r + ψ 2 ( p , q ) b D p , q f ( b ) r 1 / r +   ψ 8 ( p , q ) 1 1 / r ψ 3 ( p , q ) b D p , q f ( a ) r + ψ 4 ( p , q ) b D p , q f ( b ) r 1 / r +   ψ 9 ( p , q ) 1 1 / r ψ 5 ( p , q ) b D p , q f ( a ) r + ψ 6 ( p , q ) b D p , q f ( b ) r 1 / r ,
where ψ i ( p , q ) , i = 1 , 2 , , 6 are given in Theorem 10 and ψ j ( p , q ) , j = 7 , 8 , 9 are defined by
ψ 7 ( p , q ) = 0 1 3 q t 1 8 d p , q t =   3 p 5 q 72 ( p + q ) , f o r 0 < q < 3 8 ; 20 q 2 12 p q + 9 q + 9 p 9 288 q ( p + q ) , f o r 3 8 q < 1 , ψ 8 ( p , q ) = 1 3 2 3 q t 1 2 d p , q t =   3 p 3 q 18 ( p + q ) , f o r 0 q < 3 4 ; q 2 9 p q + 9 q + 9 p 9 18 q ( p + q ) , f o r 3 4 q < 1 , ψ 9 ( p , q ) = 2 3 1 q t 7 8 d p , q t =   21 p 19 q 72 ( p + q ) , f o r 0 q < 7 8 ; 4 q 2 420 p q + 441 q + 441 p 441 288 q ( p + q ) , f o r 7 8 q < 1 .
Proof. 
The proof of Theorem 12 is similar to that of Theorem 8. □
Remark 8.
If p = 1 , then Equation (36) reduces to
1 b a a b f ( x ) b d q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) ( b a ) ψ 7 ( q ) 1 1 / r ψ 1 ( q ) b D q f ( a ) r + ψ 2 ( q ) b D q f ( b ) r 1 / r +   ψ 8 ( q ) 1 1 / r ψ 3 ( q ) b D q f ( a ) r + ψ 4 ( q ) b D q f ( b ) r 1 / r +   ψ 9 ( p , q ) 1 1 / r ψ 5 ( q ) b D q f ( a ) r + ψ 6 ( q ) b D q f ( b ) r 1 / r ,
where ψ i ( q ) , i = 1 , 2 , , 6 are given in Remark 6 and ψ j ( q ) , j = 7 , 8 , 9 are defined by
ψ 7 ( q ) = 0 1 3 q t 1 8 d q t =   3 5 q 72 ( 1 + q ) , f o r 0 < q < 3 8 ; 20 q 3 288 ( 1 + q ) , f o r 3 8 q < 1 , ψ 8 ( q ) = 1 3 2 3 q t 1 2 d q t =   3 3 q 18 ( 1 + q ) , f o r 0 < q < 3 4 ; q 18 ( 1 + q ) , f o r 3 4 q < 1 , ψ 9 ( q ) = 2 3 1 q t 7 8 d q t =   21 19 q 72 ( 1 + q ) , f o r 0 < q < 7 8 ; 21 4 q 288 ( 1 + q ) , f o r 7 8 q < 1 ,
which appeared in [50].
Moreover, if q 1 , then Equation (37) reduces to
1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) 1 b a a b f ( x ) d x b a 36 17 16 1 1 / r 251 1152 f ( a ) r + 937 1152 f ( b ) r 1 / r + 1 2 f ( a ) r + 1 2 f ( b ) r 1 / r + 17 16 1 1 / r 973 1152 f ( a ) r + 251 1152 f ( b ) r 1 / r ,
which appeared in [66].

5. Examples

In this section, we give some examples of our main theorems.
Example 1.
Define function f : [ 0 , 1 ] R by f ( x ) = 1 x . Then | b D p , q f ( x ) | = | b D p , q ( 1 x ) | = 1 is a convex function and a ( p , q ) -integrable function on [ 0 , 1 ] . Applying Theorem 6 with p = 1 and q = 1 2 , the left side of Equation (18) becomes
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 6 f ( a ) + 4 f a + b 2 + f ( b ) =   1 1 · ( 1 0 ) 1 · 0 + ( 1 1 ) · 1 1 ( 1 x ) 1 d 1 , 1 2 x 1 6 f ( 0 ) + 4 f 0 + 1 2 + f ( 1 ) =   0 1 ( 1 x ) 1 d 1 , 1 2 x 1 6 1 + 2 + 0   =   2 3 1 2   = 1 6 ,
and the right side of Equation (18) becomes -0.3cm0cm
( b a ) Λ 1 ( p , q ) + Λ 3 ( p , q ) b D p , q f ( a ) + Λ 2 ( p , q ) + Λ 4 ( p , q ) b D p , q f ( b ) = ( 1 0 ) Λ 1 1 , 1 2 + Λ 3 1 , 1 2 1 D 1 , 1 2 f ( 0 ) + Λ 2 1 , 1 2 + Λ 4 1 , 1 2 1 D 1 , 1 2 f ( 1 ) = 13 1134 + 1 6 · | 1 | + 29 1134 + 0 · | 1 | = 11 54 .
It is clear that
1 6 11 54 ,
which demonstrates the result described in Theorem 6.
Example 2.
Define function f : [ 0 , 1 ] R by f ( x ) = 1 x . Then | b D p , q f ( x ) | =   | b D p , q ( 1 x ) | = 1 is a convex function and a ( p , q ) -integrable function on [ 0 , 1 ] . Applying Theorem 10 with p = 1 and q = 1 2 , the left side of Equation (33) becomes
1 p ( b a ) p a + ( 1 p ) b b f ( x ) b d p , q x 1 8 f ( a ) + 3 f 2 a + b 3 + 3 f a + 2 b 3 + f ( b ) =   1 1 · ( 1 0 ) 1 · 0 + ( 1 1 ) · 1 1 ( 1 x ) 1 d 1 , 1 2 x 1 8 f ( 0 ) + 3 f 2 · 0 + 1 3 + 3 f 0 + 2 · 1 3 + f ( 1 ) =   0 1 ( 1 x ) 1 d 1 , 1 2 x 1 8 1 + 2 + 1 + 0 = 2 3 1 2 = 1 6 ,
and the right side of Equation (33) becomes
( b a ) ψ 1 ( p , q ) + ψ 3 ( p , q ) + ψ 5 ( p , q ) b D p , q f ( a ) + ψ 2 ( p , q ) + ψ 4 ( p , q ) + ψ 6 ( p , q ) b D p , q f ( b ) = ( 1 0 ) ψ 1 1 , 1 2 + ψ 3 1 , 1 2 + ψ 5 1 , 1 2 1 D 1 , 1 2 f ( 0 ) + ψ 2 1 , 1 2 + ψ 4 1 , 1 2 + ψ 6 1 , 1 2 1 D 1 , 1 2 f ( 1 ) = 17 6048 + 1 27 + 31 252 · | 1 | + 3 224 + 1 54 25 1512 · | 1 | = 77 432 .
It is clear that
1 6 77 432 ,
which demonstrates the result described in Theorem 10.

6. Conclusions

In this work, we employed ( p , q ) -calculus to establish new integral inequalities related to Simpson- and Newton-type inequalities for convex functions. The results in this study were the generalization and extension of some previously proved research in the literature of Simpson- and Newton-type inequalities. In addition, some examples were displayed to verify our main results.

Author Contributions

Conceptualization, J.T. and S.K.N.; investigation, W.L. and K.N.; methodology, K.N.; validation, W.L., K.N., J.T. and S.K.N.; visualization, J.T. and S.K.N.; writing—original draft, W.L.; writing—review and editing, K.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to thank anonymous referees for comments which are helpful for improvement in this paper. This research was supported by the Program Management Unit for Human Resources & Institutional Development, Research and Innovation [grant number B05F630104]. The first author is supported by Development and Promotion of Science and Technology talents project (DPST), Thailand.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Awan, M.U.; Akhtar, N.; Kashuri, A.; Noor, M.A.; Chu, Y.M. 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Math. 2020, 5, 4662–4680. [Google Scholar] [CrossRef]
  2. Adil Khan, M.; Pečarić, J.; Chu, Y.M. Refinements of Jensen’s and McShane’s inequalities with applications. AIMS Math. 2020, 5, 4931–4945. [Google Scholar] [CrossRef]
  3. Khurshid, Y.; Adil Khan, M.; Chu, Y.M. Conformable fractional integral inequalities for GG-and GA-convex function. AIMS Math. 2020, 5, 5012–5030. [Google Scholar] [CrossRef]
  4. Khurshid, Y.; Adil Khan, M.; Chu, Y.M. Conformable integral inequalities of the Hermite-Hadamard type in terms of GG-and GA-convexities. J. Funct. Spaces 2019, 2018, 1–8. [Google Scholar] [CrossRef]
  5. Qi, H.; Yussouf, M.; Mehmood, S.; Chu, Y.M.; Farid, G. Farid, Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Math. 2020, 5, 6030–6042. [Google Scholar] [CrossRef]
  6. Yang, X.; Farid, G.; Nazeer, W.; Yussouf, M.; Chu, Y.M.; Dong, C. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function. AIMS Math. 2020, 5, 6325–6340. [Google Scholar] [CrossRef]
  7. Akin, L. New principles of non-linear integral inequalities on time scales. Appl. Math. Nonlinear Sci. 2021, 6, 535–555. [Google Scholar]
  8. Akdemir, A.O.; Deniz, E.; Yüksel, E. On Some integral inequalities via conformable fractional integrals. Appl. Math. Nonlinear Sci. 2021. [Google Scholar] [CrossRef]
  9. Adil Khan, M.; Hanif, M.; Khan, Z.A.; Ahmad, K.; Chu, Y.M. Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, 162. [Google Scholar] [CrossRef] [Green Version]
  10. Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.M. A note on generalized convex functions. J. Inequal. Appl. 2019, 291. [Google Scholar] [CrossRef]
  11. Yan, P.; Li, Q.; Chu, Y.M.; Mukhtar, S.; Waheed, S. On some fractional integral inequalities for generalized strongly modified h-convex function. AIMS Math. 2020, 5, 6620–6638. [Google Scholar] [CrossRef]
  12. Sun, M.-B.; Chu, Y.M. Inequalities for the generalized weighted mean values of g-convex functions with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 172. [Google Scholar] [CrossRef]
  13. Abbas Baloch, I.; Mughal, A.A.; Chu, Y.M.; Haq, A.U.; De La Sen, M. A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Math. 2020, 5, 6404–6418. [Google Scholar] [CrossRef]
  14. Ge-JiLe, H.; Rashid, S.; Noor, M.A.; Suhail, A.; Chu, Y.M. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Math. 2020, 5, 6108–6123. [Google Scholar] [CrossRef]
  15. Liu, W.; Zhuang, H. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
  16. Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
  17. Noor, M.A.; Noor, K.I.; Iftikhar, S. Some Newton’s type inequalities for harmonic convex functions. J. Adv. Math. Stud. 2016, 9, 7–16. [Google Scholar]
  18. Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton’s inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
  19. Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
  20. Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 4, 12. [Google Scholar]
  21. Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 60, 2191–2199. [Google Scholar]
  22. Hussain, S.; Khalid, J.; Chu, Y.M. Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 2020, 5, 5859–5883. [Google Scholar] [CrossRef]
  23. Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.; Chu, Y.M. New Simpson type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, 1–12. [Google Scholar] [CrossRef]
  24. Sarıkaya, M.Z.; Bardak, S. Generalized Simpson type integral inequalities. Konuralp J. Math. 2019, 7, 186–191. [Google Scholar]
  25. Li, Y.; Du, T. Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions. J. Egypt. Math. Soc. 2016, 24, 175–180. [Google Scholar] [CrossRef] [Green Version]
  26. Erden, S.; Iftikhar, S.; Delavar, R.M.; Kumam, P.; Thounthong, P.; Kumam, W. On generalizations of some inequalities for convex functions via quantum integrals. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. MatemáTicas 2020, 114, 110. [Google Scholar] [CrossRef]
  27. Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
  28. Tunç, M.; Göv, E.; Balgeçti, S. Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes. 2018, 19, 649–664. [Google Scholar] [CrossRef]
  29. Deng, Y.; Awan, M.U.; Wu, S. Quantum integral inequalities of Simpson-type for strongly preinvex functions. Mathematics 2019, 7, 751. [Google Scholar] [CrossRef] [Green Version]
  30. Ali, M.A.; Budak, H.; Zhang, Z.; Yildirim, H. Some new Simpson’s type inequalities for coordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2020, 44, 1–26. [Google Scholar]
  31. Ali, M.A.; Abbas, M.; Buda, H.; Agarwal, P.; Murtaza, G.; Chu, Y.M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 2021, 64, 1–21. [Google Scholar]
  32. Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
  33. Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  34. Bangerezako, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef] [Green Version]
  35. Gauchman, H. Integral inequalities in q calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
  36. Miao, Y.; Qi, F. Several q-integral inequalities. J. Math. Inequal. 2009, 1, 115–121. [Google Scholar] [CrossRef] [Green Version]
  37. Raychev, P.P.; Roussev, R.P.; Smirnov, Y.F. The quantum algebra SUq(2) and rotational spectra of deformed nuclei. J. Phys. G Nucl. Part. Phys. 1990, 16, 137–141. [Google Scholar] [CrossRef]
  38. Gavrilik, A.M. q-Serre relations in and q-deformed meson mass sum rules. J. Phys. A Math. Gen. 1994, 27, 91–94. [Google Scholar] [CrossRef]
  39. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
  40. Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
  41. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
  42. Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
  43. Prabseang, J.; Nonlaopon, K.; Ntouyas, S.K. On the refinement of quantum Hermite-Hadamard inequalities for convex functions. J. Math. Inequal. 2020, 14, 875–885. [Google Scholar] [CrossRef]
  44. Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
  45. Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal. 2019, 13, 675–686. [Google Scholar] [CrossRef]
  46. Asawasamrit, S.; Sudprasert, C.; Ntouyas, S.; Tariboon, J. Some result on quantum Hanh integral inequalities. J. Inequal. Appl. 2019, 154. [Google Scholar] [CrossRef] [Green Version]
  47. Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-Like inequalities for coordinated convex functions. J. Opt. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
  48. Noor, M.A.; Awan, M.U.; Noor, K.I. Quantum Ostrowski inequalities for q-differentiabble convex functions. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar] [CrossRef]
  49. Yang, W. Some new Fejér type inequalities via quantum calculus on finite intervals. ScienceAsia 2017, 43, 123–134. [Google Scholar] [CrossRef] [Green Version]
  50. Budak, H.; Erden, S.; Ali, M.A. Simpson- and Newton-type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
  51. Chakrabarti, R.; Jagannathan, R.A. (p,q)-oscillator realization of two-paramenter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
  52. Tunç, M.; Göv, E. (p,q)-Integral inequalities. RGMIA Res. Rep. Coll. 2016, 19, 1–13. [Google Scholar]
  53. Tunç, M.; Göv, E. Some integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar]
  54. Latif, M.A.; Kunt, M.; Dragomir, S.S.; İşcan, İ. Post-quantum trapezoid type inequalities. AIMS Math. 2020, 5, 4011–4026. [Google Scholar] [CrossRef]
  55. Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p,q)-Hermite-Hadamard inequalities and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. 2018, 112, 969–992. [Google Scholar]
  56. Soontharanon, J.; Sitthiwirattham, T. Fractional (p,q)-calculus. Adv. Differ. Equ. 2020, 2020, 1–18. [Google Scholar] [CrossRef] [Green Version]
  57. Prabseang, J.; Nonlaopon, K.; Tariboon, J. (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex functions. Axioms 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
  58. Thongjob, S.; Nonlaopon, K.; Ntouyas, S.K. Some (p,q)-Hardy type inequalities for (p,q)-integrable functions. AIMS Math. 2020, 6, 77–89. [Google Scholar] [CrossRef]
  59. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  60. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
  61. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121, 1–13. [Google Scholar] [CrossRef] [Green Version]
  62. Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  63. Aamir Ali, M.; Budak, H.; Kalsoom, H.; Chu, Y.M. Post-quantum Hermite-Hadamard inequalities involving newly defined (p,q)-integral. Authorea 2020, 1–19. [Google Scholar] [CrossRef]
  64. Bermudo, S.; Kórus, P.; Nápoles Valdés, J.E. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
  65. Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.M. Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
  66. Iftikhar, S.; Kumam, P.; Erden, S. Newton’s type integral inequalities via local fractional integrals. Fractals 2020, 28, 2050037. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus. Mathematics 2021, 9, 1338. https://doi.org/10.3390/math9121338

AMA Style

Luangboon W, Nonlaopon K, Tariboon J, Ntouyas SK. Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus. Mathematics. 2021; 9(12):1338. https://doi.org/10.3390/math9121338

Chicago/Turabian Style

Luangboon, Waewta, Kamsing Nonlaopon, Jessada Tariboon, and Sotiris K. Ntouyas. 2021. "Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus" Mathematics 9, no. 12: 1338. https://doi.org/10.3390/math9121338

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop