High Precision Wilker-Type Inequality of Fractional Powers
Abstract
:1. Introduction
- (1)
- If , then
- (2)
- There exists a largest constant c such that
2. Lemmas
3. Proof of Theorem 1
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilker, J.B. Problem E 3306. Am. Math. Mon. 1989, 96, 55. [Google Scholar]
- Sumner, J.S.; Jagers, A.A.; Vowe, M.; Anglesio, J. Inequalities involving trigonometric functions. Am. Math. Mon. 1991, 98, 264–267. [Google Scholar]
- Pinelis, I. L’Hôspital rules for monotonicity and the Wilker-Anglesio inequality. Am. Math. Mon. 2004, 111, 905–909. [Google Scholar] [CrossRef]
- Bercu, G. Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, 2016, 99. [Google Scholar] [CrossRef] [Green Version]
- Bercu, G. The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 2017, 11, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Bercu, G. Fourier series method related to f Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 2019, 22, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Bercu, G. Sharp bounds on the sinc function via the Fourier series method. J. Math. Inequal. 2019, 13, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.T.; Bercu, G. New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method. RACSAM 2021, 115, 87. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Chesneau, C. Two double sided inequalities involving sinc and hyperbolic sinc functions. Int. J. Open Probl. Compt. Math. 2019, 12, 15–20. [Google Scholar]
- Bagul, Y.J.; Chesneau, C. Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions. CUBO Math. J. 2019, 21, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Chu, Y.M.; Wang, M.K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015, 428, 587–604. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.M.; Zhang, X.H. Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 2015, 268, 1177–1198. [Google Scholar] [CrossRef]
- Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.-H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, 2014, 166. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.H.; Yang, Z.H.; Chu, Y.M.; Zhang, W. Generalized Wilker-type inequalities with two parameters. J. Inequal. Appl. 2016, 2016, 187. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yang, Z.-H.; Chu, Y.-M. Necessary and sufficient conditions for the two parameter generalized Wilker-type inequalities. J. Inequal. Appl. 2016, 2016, 322. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H. Refinements of a two-sided inequality for trigonometric functions. J. Math. Inequal. 2013, 7, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H. Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, 2013, 541. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L. New inequalities of Wilker’s type for hyperbolic functions. AIMS Math. 2020, 5, 376–384. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, Z.-J. Refinements of Huygens- and Wilker- type inequalities. AIMS Math. 2020, 5, 2967–2978. [Google Scholar] [CrossRef]
- Zhu, L. New Cusa-Huygens type inequalities. AIMS Math. 2020, 5, 5320–5331. [Google Scholar] [CrossRef]
- Wu, S.-H.; Li, S.-G. Sharpened versions of Mitrinovic -Adamovic, Lazarevic and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-H.; Srivastava, H.M. A weighted and exponential generalization of Wilker’s inequality and its applications. Int. Trans. Spec. Funct. 2008, 18, 529–535. [Google Scholar] [CrossRef]
- Chen, C.-P. Sharp Wilker and Huygens type inequalities for inverse trigonometric and inverse hyperbolic functions. Int. Trans. Spec. Funct. 2012, 23, 865–873. [Google Scholar] [CrossRef]
- Chen, C.-P.; Cheung, W.-S. Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem. Int. Trans. Spec. Funct. 2012, 23, 325–336. [Google Scholar] [CrossRef]
- Huang, W.-K.; Chen, X.-D.; Mao, X.-Y.; Chen, L.-Q. New inequalities for hyperbolic functions based on reparameterization. RACSAM 2021, 115, 3. [Google Scholar] [CrossRef]
- Mortici, C. The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 2011, 14, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Mortici, C. A Subtly Analysis of Wilker Inequality. Appl. Math. Comput. 2014, 231, 516–520. [Google Scholar] [CrossRef] [Green Version]
- Nenezić, M.; Malešević, B.; Mortici, C. New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 2016, 283, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [Google Scholar] [CrossRef]
- Zhu, L. Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, 2009, 485842. [Google Scholar] [CrossRef]
- Wu, S.-H.; Debnath, L. A generalization of L’Hôspital-type rules for monotonicity and its application. Appl. Math. Lett. 2009, 22, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L. New Mitrinović–Adamović type inequalities. RACSAM 2020, 114, 119. [Google Scholar] [CrossRef]
- Zhu, L. An unity of Mitrinovic–Adamovic and Cusa–Huygens inequalities and the analogue for hyperbolic functions. RACSAM 2019, 113, 3399–3412. [Google Scholar] [CrossRef]
- Zhu, L. Sharp inequalities of Mitrinovic–Adamovic type. RACSAM 2019, 113, 957–968. [Google Scholar] [CrossRef]
- Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equ. 2018, 2018, 90. [Google Scholar] [CrossRef]
- Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 2017, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutovac, T.; Malešević, B.; Rašajski, M. A new method for proving some inequalities related to several special functions. Results Math. 2018, 73, 100. [Google Scholar] [CrossRef] [Green Version]
- Malešević, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function. J. Inequal. Appl. 2017, 2017, 275. [Google Scholar] [CrossRef] [PubMed]
- Rašajski, M.; Lutovac, T.; Malešević, B. About some exponential inequalities related to the sinc function. J. Inequal. Appl. 2018, 2018, 150. [Google Scholar] [CrossRef]
- Banjac, B.; Makragić, M.; Malešević, B. Some notes on a method for proving inequalities by computer. Results Math. 2016, 69, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Malešević, B.; Rašajski, M.; Lutovac, T. Double-sided Taylor’s approximations and their applications in Theory of analytic inequalities. In Differential and Integral Inequalities; Rassias, T.M., Andrica, D., Eds.; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2019; Volume 151, pp. 569–582. [Google Scholar] [CrossRef]
- Zhu, L. New inequalities of Wilker’s type for circular functions. AIMS Math. 2020, 5, 4874–4888. [Google Scholar] [CrossRef]
- Zhu, L. Wilker inequalities of exponential type for circular functions. RACSAM 2021, 115, 35. [Google Scholar] [CrossRef]
- Milovanović, G.V.; Rassias, M.T. (Eds.) Analytic Number Theory, Approximation Theory and Special Functions; Springer: New York, NY, USA, 2014. [Google Scholar]
- Rassias, M.T. From a cotangent sum to a generalized totient function. Appl. Anal. Discret. Math. 2017, 11, 369–385. [Google Scholar] [CrossRef]
- Maier, H.; Rassias, M.T. Generalizations of a cotangent sum associated to the Estermann zeta function. Commun. Contemp. Math. 2016, 18. [Google Scholar] [CrossRef] [Green Version]
- Milovanović, G.V. Recent Progress in Inequalities; Kluwer Academic Publishers: New York, NY, USA, 1998. [Google Scholar]
- Maier, H.; Rassias, M.T. The order of magnitude for moments for certain cotangent sums. J. Math. Appl. 2015, 429, 576–590. [Google Scholar] [CrossRef]
- Maier, H.; Rassias, M.T. The rate of growth of moments of certain cotangent sums. Aequat. Math. 2016, 90, 581–595. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.B. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Acad. Press: San Diego, CA, USA, 2004. [Google Scholar]
- Zwillinger, D. CRC Standard Mathematical Tables and Formulae; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
- Zhu, L. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. RACSAM 2020, 114, 83. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L. High Precision Wilker-Type Inequality of Fractional Powers. Mathematics 2021, 9, 1476. https://doi.org/10.3390/math9131476
Zhu L. High Precision Wilker-Type Inequality of Fractional Powers. Mathematics. 2021; 9(13):1476. https://doi.org/10.3390/math9131476
Chicago/Turabian StyleZhu, Ling. 2021. "High Precision Wilker-Type Inequality of Fractional Powers" Mathematics 9, no. 13: 1476. https://doi.org/10.3390/math9131476
APA StyleZhu, L. (2021). High Precision Wilker-Type Inequality of Fractional Powers. Mathematics, 9(13), 1476. https://doi.org/10.3390/math9131476