Next Article in Journal
A Hybrid Whale Optimization Algorithm for Global Optimization
Previous Article in Journal
Mathematics Training in Engineering Degrees: An Intervention from Teaching Staff to Students
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

High Precision Wilker-Type Inequality of Fractional Powers

Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
Mathematics 2021, 9(13), 1476; https://doi.org/10.3390/math9131476
Submission received: 30 May 2021 / Revised: 17 June 2021 / Accepted: 19 June 2021 / Published: 24 June 2021

Abstract

:
This paper established a new high precision Wilker-type inequality with fractional powers for the function 2 [ x / sin x 6 / 5 + x / tan x 3 / 5 ] bounded by the function x 6 tan x / x 5 / 4 .
MSC:
33E05; 41A20

1. Introduction

We know the following fact: If 0 < x < π / 2 , then the sine function and tangent function satisfy the following simultaneous inequalities
sin x < x < tan x ,
which is
sin x x < 1 < tan x x .
One can consider the asymptotic expansion of the sum of the square of the first function and the last one in (1) as follows:
sin x x 2 + tan x x = 2 + 8 45 x 4 + O x 6 .
In 1989, inspired by the above formula (2), Wilker [1] proposed two open problems as follows:
(1)
If 0 < x < π / 2 , then
sin x x 2 + tan x x > 2 .
(2)
There exists a largest constant c such that
sin x x 2 + tan x x > 2 + c x 3 tan x
for 0 < x < π / 2 .
Sumner et al. [2] affirmed the truth of two problems above and obtained a further result as follows: For x 0 , π / 2 , the double inequality
16 π 4 x 3 tan x < sin x x 2 + tan x x 2 < 8 45 x 3 tan x
holds with the best constants 16 / π 4 and 8 / 45 .
For the promotion and development of inequalities (3) and (5), interested readers can see [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]. Recently, Zhu [44] established two new Wilker-type inequality for circular functions as follows.
Proposition 1.
Let 0 < x < π / 2 . Then
sin x x 2 + tan x x 2 > 8 45 x 4 tan x x 6 / 7
holds, where 8 / 45 can not be replaced by any larger number.
Proposition 2.
Let 0 < x < π / 2 . Then
x sin x 2 + x tan x 2 < 2 45 x 4 tan x x 4 / 7
holds, where 2 / 45 can not be replaced by any smaller number.
Resently, the author of this paper [45] shown two Wilker’s inequalities of exponential type for the functions sin x / x 2 + tan x / x 2 and x / sin x 2 + x / tan x 2 bounded by the function x 4 tan ( λ x ) / ( λ x ) α , and obtained the following results.
Proposition 3.
Let 0 < x < 7 π / 2 61 1 . 407 8 . Then
sin x x 2 + tan x x 2 < 8 45 x 4 tan ( 61 x / 7 ) 61 x / 7 42 / 61
holds with the best constant 8 / 45 .
Proposition 4.
Let 0 < x < π / 2. Then
x sin x 2 + x tan x 2 > 2 45 x 4 tan 46 x / 14 46 x / 14 56 / 23
holds with the best constant 2 / 45 .
In this paper we consider the asymptotic expansion of the following function
x sin x 2 a + x tan x a 2 = 1 45 a 5 a 3 x 4 + O x 6 .
In order to obtain some more precise Wilker-type inequalities, letting a = 3 / 5 in (10) we obtain the following result:
2 x sin x 6 5 + x tan x 3 5 = 16 7875 x 6 + 4 4725 x 8 + 5392 19 490 625 x 10 + 34 562 816 399 070 546 875 x 12 + O x 14 .
Then we obtain the following precise Wilker-type inequalities with fractional powers.
Theorem 1.
Let 0 < x < π / 2 . Then
2 x sin x 6 5 + x tan x 3 5 < 16 7875 x 6 tan x x 5 4
holds with the best constant 16 / 7875 .
Due to the high accuracy of the inequality established in this paper, we demonstrate it by the following technical route: using the power series expansions of the correlation functions whose Taylor coefficients are connected with Bernoulli numbers we realize our whole proof by estimating the ratio of two adjacent even-indexed Bernoulli numbers. Here, I would like to mention two conclusions of Euler, a famous mathematician in the history of mathematics, on the expansion of power series of cotangent function and Riemann zeta function:
cot x = 1 x n = 1 2 2 n 2 n ! | B 2 n | x 2 n 1 , 0 < | x | < π , ζ ( 2 n ) = 2 π 2 n 2 ( 2 n ) ! B 2 n , n N ,
which are the bridges between cotangent and Bernoulli number, Bernoulli number and Riemann zeta function. Some very interesting recent developments (see [46,47,48,49,50,51,52]) involving cotangent function have shown the connection of such functions to really essential open problems in Mathematics such as the Riemann Hypothesis, as well as to the study of important Number Theoretic functions, such as the Euler totient function. It is beneficial for readers to understand the internal relationship between the functions mentioned above in the number theory and other mathematical fields.

2. Lemmas

In order to prove Theorem 1, we need the following lemmas.
Lemma 1.
Let B 2 n be the even-indexed Bernoulli numbers, we have the following power series expansions
1 cos 2 x = sec 2 x = n = 1 2 2 n ( 2 2 n 1 ) 2 n 1 2 n ! | B 2 n | x 2 n 2 , 1 cos 4 x = 2 3 n = 1 2 2 n ( 2 2 n 1 ) 2 n 1 2 n ! | B 2 n | x 2 n 2 + 1 6 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n ! | B 2 n | x 2 n 4 , 1 cos 6 x = 8 15 n = 1 2 2 n ( 2 2 n 1 ) 2 n 1 2 n ! | B 2 n | x 2 n 2 + 1 6 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n ! | B 2 n | x 2 n 4 + 1 120 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n ! | B 2 n | x 2 n 6 , 1 cos 8 x = 16 35 n = 1 2 2 n ( 2 2 n 1 ) 2 n 1 2 n ! | B 2 n | x 2 n 2 + 7 45 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n ! | B 2 n | x 2 n 4 + 1 90 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n ! | B 2 n | x 2 n 6 + 1 5040 n = 4 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n ! | B 2 n | x 2 n 8 ,
1 cos 10 x = 128 315 n = 1 2 2 n ( 2 2 n 1 ) 2 n 1 2 n ! | B 2 n | x 2 n 2 + 82 567 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n ! | B 2 n | x 2 n 4 + 13 1080 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n ! | B 2 n | x 2 n 6 + 1 3024 n = 4 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n ! | B 2 n | x 2 n 8 + 1 362 880 n = 5 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n 9 2 n ! | B 2 n | x 2 n 10 ,
1 cos 12 x = 256 693 n = 1 2 2 n ( 2 2 n 1 ) 2 n 1 2 n ! | B 2 n | x 2 n 2 + 1916 14 175 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n ! | B 2 n | x 2 n 4 + 139 11 340 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n ! | B 2 n | x 2 n 6 + 31 75 600 n = 4 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n ! | B 2 n | x 2 n 8 + 1 181 440 n = 5 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n 9 2 n ! | B 2 n | x 2 n 10 + 1 39 916 800 n = 6 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n 9 2 n 10 2 n 11 2 n ! | B 2 n | x 2 n 12 ,
sin x cos x = tan x = n = 1 2 2 n 1 2 n ! 2 2 n | B 2 n | x 2 n 1 , sin x cos 3 x = 1 2 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n ! | B 2 n | x 2 n 3 , sin x cos 5 x = 1 6 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n ! | B 2 n | x 2 n 3 + 1 24 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n ! | B 2 n | x 2 n 5 ,
sin x cos 7 x = 4 45 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n ! | B 2 n | x 2 n 3 + 1 36 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n ! | B 2 n | x 2 n 5 + 1 720 n = 4 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n ! | B 2 n | x 2 n 7 , sin x cos 9 x = 2 35 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n ! | B 2 n | x 2 n 3 + 7 360 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n ! | B 2 n | x 2 n 5 + 1 720 n = 4 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n ! | B 2 n | x 2 n 7 + 1 40 320 n = 5 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n ! | B 2 n | x 2 n 9 ,
sin x cos 11 x = 64 1575 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n ! | B 2 n | x 2 n 3 + 41 2835 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n ! | B 2 n | x 2 n 5 + 13 10 800 n = 4 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n ! | B 2 n | x 2 n 7 + 1 30 240 n = 5 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n ! | B 2 n | x 2 n 9 + 1 3628 800 n = 6 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n 9 2 n 10 2 n ! | B 2 n | x 2 n 11 ,
sin x cos 13 x = 64 2079 n = 2 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n ! | B 2 n | x 2 n 3 + 479 42 525 n = 3 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n ! | B 2 n | x 2 n 5 + 139 136 080 n = 4 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n ! | B 2 n | x 2 n 7 + 31 907 200 n = 5 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n ! | B 2 n | x 2 n 9 + 1 2177 280 n = 6 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n 9 2 n 10 2 n ! | B 2 n | x 2 n 11 + 1 479 001 600 n = 7 2 2 n ( 2 2 n 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 2 n 5 2 n 6 2 n 7 2 n 8 2 n 9 2 n 10 2 n 11 2 n 12 2 n ! | B 2 n | x 2 n 13
hold for all x ( π / 2 , π / 2 ) .
Proof. 
By the power series expansion of tan x (see [53,54]):
tan x = n = 1 2 2 n 2 2 n 1 2 n ! | B 2 n | x 2 n 1 , x < π 2
we can obtain
1 cos 2 x = sec 2 x = tan x = n = 1 2 2 n ( 2 2 n 1 ) 2 n 1 2 n ! | B 2 n | x 2 n 2 , x < π 2 .
Via
1 cos n + 1 x = 1 n n 1 cos n 1 x + 1 n 1 1 cos n 1 x , sin x cos n + 1 x = 1 n 1 cos n x
we can get the desired power series expansions of other functions. □
Lemma 2
([12,55,56]). Let B 2 n be the even-indexed Bernoulli numbers, we have
2 2 n 1 1 2 2 n + 1 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 < | B 2 n + 2 | | B 2 n | < 2 2 n 1 2 2 n + 2 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 .
Lemma 3.
Let B 2 n be the even-indexed Bernoulli numbers, n 10 and n N . Then
a n = 128 51 975 2 2 n + 6 2 2 n + 6 1 n 2 n + 1 2 n + 3 2 n + 5 n + 1 n + 2 n + 3 14 130 836 279 n + 2610 109 397 n 2 + 252 157 346 n 3 + 13 120 940 n 4 + 273 800 n 5 + 29 051 019 788 2 n + 6 ! | B 2 n + 6 | 256 31 185 2 2 n + 4 2 2 n + 4 1 n 2 n + 1 2 n + 3 n + 1 1007 457 799 854 n + 448 538 582 689 n 2 + 91 600 811 650 n 3 + 10 838 033 881 n 4 + 868 613 338 n 5 + 83 295 436 n 6 + 4983 160 n 7 + 724 428 764 568 2 n + 4 ! | B 2 n + 4 | 512 1575 2 2 n + 2 2 2 n + 2 1 n 2 n + 1 324 988 669 975 n 74 432 045 925 n 2 33 240 865 835 n 3 11 124 715 381 n 4 922 530 750 n 5 44 831 420 n 6 + 5749 800 n 7 5273 077 314 2 n + 2 ! | B 2 n + 2 | 1024 945 2 2 n 2 2 n 1 470 063 451 466 n 274 339 736 559 n 2 + 108 583 995 240 n 3 + 12 695 894 043 n 4 3857 965 770 n 5 + 610 797 924 n 6 + 45 615 080 n 7 154 356 228 096 2 n ! | B 2 n | 2048 14 175 2 2 n 2 2 2 n 2 1 2587 181 560 206 n + 1213 011 374 071 n 2 180 257 338 355 n 3 1918 656 460 n 4 + 2580 701 900 n 5 + 1889 134 753 248 2 n 2 ! | B 2 n 2 | 16 384 10 395 2 n 5 1277 114 903 n + 345 227 575 n 2 + 551 290 272 2 2 n 4 2 2 n 4 1 2 n 4 ! | B 2 n 4 | 12 560 629 760 33 2 n 7 2 2 n 6 2 2 n 6 1 2 n 6 ! | B 2 n 6 | > 0 .
Proof. 
Since
a n | B 2 n | = 128 51 975 2 2 n + 6 2 2 n + 6 1 n 2 n + 1 2 n + 3 2 n + 5 n + 1 n + 2 n + 3 14 130 836 279 n + 2610 109 397 n 2 + 252 157 346 n 3 + 13 120 940 n 4 + 273 800 n 5 + 29 051 019 788 2 n + 6 ! × | B 2 n + 6 | | B 2 n + 4 | | B 2 n + 4 | | B 2 n + 2 | | B 2 n + 2 | | B 2 n | 256 31 185 2 2 n + 4 2 2 n + 4 1 n 2 n + 1 2 n + 3 n + 1 1007 457 799 854 n + 448 538 582 689 n 2 + 91 600 811 650 n 3 + 10 838 033 881 n 4 + 868 613 338 n 5 + 83 295 436 n 6 + 4983 160 n 7 + 724 428 764 568 2 n + 4 ! | B 2 n + 4 | | B 2 n | | B 2 n + 2 | | B 2 n | 512 1575 2 2 n + 2 2 2 n + 2 1 n 2 n + 1 324 988 669 975 n 74 432 045 925 n 2 33 240 865 835 n 3 11 124 715 381 n 4 922 530 750 n 5 44 831 420 n 6 + 5749 800 n 7 5273 077 314 2 n + 2 ! | B 2 n + 2 | | B 2 n | 1024 945 2 2 n 2 2 n 1 470 063 451 466 n 274 339 736 559 n 2 + 108 583 995 240 n 3 + 12 695 894 043 n 4 3857 965 770 n 5 + 610 797 924 n 6 + 45 615 080 n 7 154 356 228 096 2 n ! 2048 14 175 2 2 n 2 2 2 n 2 1 2587 181 560 206 n + 1213 011 374 071 n 2 180 257 338 355 n 3 1918 656 460 n 4 + 2580 701 900 n 5 + 1889 134 753 248 2 n 2 ! | B 2 n 2 | | B 2 n | 16 384 10 395 2 n 5 1277 114 903 n + 345 227 575 n 2 + 551 290 272 2 2 n 4 2 2 n 4 1 2 n 4 ! × | B 2 n 4 | | B 2 n 2 | | B 2 n 2 | | B 2 n | 12 560 629 760 33 2 n 7 2 2 n 6 2 2 n 6 1 2 n 6 ! | B 2 n 6 | | B 2 n 4 | | B 2 n 4 | | B 2 n 2 | | B 2 n 2 | | B 2 n | ,
by Lemma 2 we have
a n | B 2 n | > 128 51 975 2 2 n + 6 2 2 n + 6 1 n 2 n + 1 2 n + 3 2 n + 5 n + 1 n + 2 n + 3 14 130 836 279 n + 2610 109 397 n 2 + 252 157 346 n 3 + 13 120 940 n 4 + 273 800 n 5 + 29 051 019 788 2 n + 6 ! × 2 2 n + 3 1 2 2 n + 5 1 ( 2 n + 6 ) ( 2 n + 5 ) π 2 2 2 n + 1 1 2 2 n + 3 1 ( 2 n + 4 ) ( 2 n + 3 ) π 2 2 2 n 1 1 2 2 n + 1 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 256 31 185 2 2 n + 4 2 2 n + 4 1 n 2 n + 1 2 n + 3 n + 1 1007 457 799 854 n + 448 538 582 689 n 2 + 91 600 811 650 n 3 + 10 838 033 881 n 4 + 868 613 338 n 5 + 83 295 436 n 6 + 4983 160 n 7 + 724 428 764 568 2 n + 4 ! × 2 2 n + 2 1 2 2 n + 4 1 ( 2 n + 4 ) ( 2 n + 3 ) π 2 2 2 n 1 2 2 n + 2 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 512 1575 2 2 n + 2 2 2 n + 2 1 n 2 n + 1 324 988 669 975 n 74 432 045 925 n 2 33 240 865 835 n 3 11 124 715 381 n 4 922 530 750 n 5 44 831 420 n 6 + 5749 800 n 7 5273 077 314 2 n + 2 ! × 2 2 n 1 2 2 n + 2 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 1024 945 2 2 n 2 2 n 1 470 063 451 466 n 274 339 736 559 n 2 + 108 583 995 240 n 3 + 12 695 894 043 n 4 3857 965 770 n 5 + 610 797 924 n 6 + 45 615 080 n 7 154 356 228 096 2 n ! 2048 14 175 2 2 n 2 2 2 n 2 1 2587 181 560 206 n + 1213 011 374 071 n 2 180 257 338 355 n 3 1918 656 460 n 4 + 2580 701 900 n 5 + 1889 134 753 248 2 n 2 ! × 2 2 n 1 1 2 2 n 3 1 π 2 ( 2 n ) ( 2 n 1 ) 16 384 10 395 2 n 5 1277 114 903 n + 345 227 575 n 2 + 551 290 272 2 2 n 4 2 2 n 4 1 2 n 4 ! × 2 2 n 3 1 2 2 n 5 1 π 2 ( 2 n 2 ) ( 2 n 3 ) 2 2 n 1 1 2 2 n 3 1 π 2 ( 2 n ) ( 2 n 1 ) 12 560 629 760 33 2 n 7 2 2 n 6 2 2 n 6 1 2 n 6 ! 2 2 n 5 1 2 2 n 7 1 π 2 ( 2 n 4 ) ( 2 n 5 ) 2 2 n 3 1 2 2 n 5 1 × π 2 ( 2 n 2 ) ( 2 n 3 ) 2 2 n 1 1 2 2 n 3 1 π 2 ( 2 n ) ( 2 n 1 )
= 128 51 975 2 2 n + 6 2 2 n + 6 1 n 2 n + 1 2 n + 3 2 n + 5 n + 1 n + 2 n + 3 14 130 836 279 n + 2610 109 397 n 2 + 252 157 346 n 3 + 13 120 940 n 4 + 273 800 n 5 + 29 051 019 788 2 n ! × 2 2 n + 3 1 2 2 n + 5 1 1 π 2 2 2 n + 1 1 2 2 n + 3 1 1 π 2 2 2 n 1 1 2 2 n + 1 1 1 π 2 256 31 185 2 2 n + 4 2 2 n + 4 1 n 2 n + 1 2 n + 3 n + 1 1007 457 799 854 n + 448 538 582 689 n 2 + 91 600 811 650 n 3 + 10 838 033 881 n 4 + 868 613 338 n 5 + 83 295 436 n 6 + 4983 160 n 7 + 724 428 764 568 2 n ! × 2 2 n + 2 1 2 2 n + 4 1 1 π 2 2 2 n 1 2 2 n + 2 1 1 π 2 512 1575 2 2 n + 2 2 2 n + 2 1 n 2 n + 1 324 988 669 975 n 74 432 045 925 n 2 33 240 865 835 n 3 11 124 715 381 n 4 922 530 750 n 5 44 831 420 n 6 + 5749 800 n 7 5273 077 314 2 n ! 2 2 n 1 2 2 n + 2 1 1 π 2 1024 945 2 2 n 2 2 n 1 470 063 451 466 n 274 339 736 559 n 2 + 108 583 995 240 n 3 + 12 695 894 043 n 4 3857 965 770 n 5 + 610 797 924 n 6 + 45 615 080 n 7 154 356 228 096 2 n ! 2048 14 175 2 2 n 2 2 2 n 2 1 2587 181 560 206 n + 1213 011 374 071 n 2 180 257 338 355 n 3 1918 656 460 n 4 + 2580 701 900 n 5 + 1889 134 753 248 2 n ! 2 2 n 1 1 2 2 n 3 1 π 2 1 16 384 10 395 2 n 5 1277 114 903 n + 345 227 575 n 2 + 551 290 272 2 2 n 4 2 2 n 4 1 2 n ! × 2 2 n 3 1 2 2 n 5 1 π 2 1 2 2 n 1 1 2 2 n 3 1 π 2 1 12 560 629 760 33 2 n 7 2 2 n 6 2 2 n 6 1 2 n ! 2 2 n 5 1 2 2 n 7 1 π 2 1 2 2 n 3 1 2 2 n 5 1 π 2 1 2 2 n 1 1 2 2 n 3 1 π 2 1
: = 512 155 925 2 2 n h ( n ) 2 n ! π 6 32 × 2 2 n 1 2 2 n 8 2 2 n 32 2 2 n 128 ,
where
h ( n ) = 32 u 1 ( n ) 2 2 n 3 v 1 ( n ) 2 8 n + 2 u 2 ( n ) 2 2 n 4 v 2 ( n ) 2 4 n + 768 u 3 ( n ) 2 2 n v 3 ( n )
with
u 1 ( n ) = 50 937 555 271 680 π 6 20 780 482 285 728 π 8 + 82 693 540 800 π 10 + 12 678 309 000 π 12 n 86 931 451 748 160 π 2 2088 138 616 344 π 4 + 155 120 938 983 780 π 6 28 458 997 162 266 π 8 + 224 644 651 770 π 10 + 3622 374 000 π 12 125 500 405 484 160 + n 2 132 871 790 542 788 π 4 439 643 592 392 400 π 2 + 90 532 113 064 470 π 6 13 343 125 114 781 π 8 + 128 411 030 430 π 10 + 675 997 199 597 664 + n 3 286 866 116 806 500 π 4 844 831 868 851 080 π 2 35 832 718 429 200 π 6 + 1982 830 721 905 π 8 20 713 654 500 π 10 + 1442 689 762 206 000 + n 4 72 113 563 243 260 π 4 807 837 420 041 960 π 2 4189 645 034 190 π 6 + 21 105 221 060 π 8 + 1632 023 568 381 360 + n 5 30 732 153 032 196 π 4 418 096 688 859 080 π 2 + 1273 128 704 100 π 6 28 387 720 900 π 8 + 1093 719 009 379 920 n 6 120 607 531 330 440 π 2 9176 096 758 752 π 4 + 201 563 314 920 π 6 456 723 432 390 192 n 7 20 250 571 447 920 π 2 748 397 596 320 π 4 + 15 052 976 400 π 6 121 394 270 067 840 + n 8 33 229 563 840 π 4 2188 267 794 240 π 2 + 20 660 024 024 640 n 9 181 152 533 760 π 2 + 4553 841 600 π 4 2249 071 883 520 n 10 15 719 186 560 π 2 154 331 890 944 n 11 797 305 600 π 2 6142 402 560 + 105 139 200 n 12 ,
v 1 ( n ) = 91 840 412 154 839 040 π 6 36 802 234 128 024 288 π 8 + 135 865 487 534 400 π 10 + 14 339 167 479 000 π 12 n 156 737 407 501 932 480 π 2 3764 913 925 268 232 π 4 + 279 683 052 987 755 340 π 6 50 400 883 974 373 086 π 8 + 369 091 162 858 110 π 10 + 4096 904 994 000 π 12 227 594 985 345 524 160 + n 2 239 567 838 348 646 764 π 4 792 677 397 083 497 200 π 2 + 163 229 399 855 239 410 π 6 23 630 674 578 277 151 π 8 + 210 979 322 996 490 π 10 + 1225 920 921 470 363 664 n 3 1523 231 859 538 497 240 π 2 517 219 608 602 119 500 π 4 + 64 606 391 327 847 600 π 6 3511 593 208 493 755 π 8 + 34 032 534 343 500 π 10 2616 317 883 760 581 000 + n 4 130 020 754 527 597 780 π 4 1456 530 868 335 653 880 π 2 7553 929 996 644 570 π 6 + 37 377 346 497 260 π 8 + 2959 674 741 259 596 360 + n 5 55 410 071 917 049 388 π 4 753 828 330 012 921 240 π 2 + 2295 451 053 492 300 π 6 50 274 653 713 900 π 8 + 1983 459 423 510 484 920 n 6 217 455 378 988 783 320 π 2 16 544 502 456 029 856 π 4 + 363 418 656 800 760 π 6 828 267 944 639 613 192 n 7 36 511 780 320 599 760 π 2 1349 360 866 164 960 π 4 + 27 140 516 449 200 π 6 220 148 508 768 027 840 + n 8 59 912 903 603 520 π 4 3945 446 833 014 720 π 2 + 37 466 953 568 684 640 n 9 326 618 018 369 280 π 2 + 8210 576 404 800 π 4 4078 691 860 763 520 n 10 28 341 693 367 680 π 2 279 880 884 226 944 n 11 1437 541 996 800 π 2 11 139 247 042 560 + 190 669 939 200 n 12 ,
u 2 ( n ) = 4522 669 126 239 559 680 π 6 1685 442 576 748 540 896 π 8 + 4642 498 074 052 800 π 10 + 614 099 253 033 000 π 12 n 7718 513 203 541 504 160 π 2 185 402 695 537 259 244 π 4 + 13 772 955 490 961 350 530 π 6 2308 223 882 839 908 462 π 8 + 12 611 775 395 019 570 π 10 + 175 456 929 438 000 π 12 11 475 066 825 241 427 520 + n 2 11 797 486 974 608 332 338 π 4 39 035 295 103 132 607 400 π 2 + 8038 210 520 824 694 595 π 6 1082 220 848 684 542 567 π 8 + 7209 123 659 370 630 π 10 + 61 809 465 946 612 609 008 n 3 75 011 354 387 484 116 580 π 2 25 470 412 212 073 925 250 π 4 + 3181 533 320 251 024 200 π 6 160 821 451 361 548 835 π 8 + 1162 885 277 284 500 π 10 131 911 617 062 424 507 000 + n 4 6402 855 110 024 190 510 π 4 71 726 672 769 395 565 460 π 2 371 992 298 118 178 815 π 6 + 1711 781 164 513 420 π 8 + 149 223 258 963 165 460 920 + n 5 2728 661 769 499 134 546 π 4 37 122 177 858 764 424 580 π 2 + 113 039 187 943 982 850 π 6 2302 442 879 036 300 π 8 + 100 003 650 763 148 295 240 n 6 10 708 561 795 532 771 940 π 2 814 731 867 064 451 952 π 4 + 17 896 504 386 774 420 π 6 41 760 278 678 881 010 424 + n 7 66 449 099 980 858 320 π 4 1798 017 863 003 644 920 π 2 1336 531 195 091 400 π 6 + 11 099 624 386 517 916 480 + n 8 2950 403 129 007 840 π 4 194 293 015 048 878 240 π 2 + 1889 038 966 680 946 080 n 9 16 084 261 743 749 760 π 2 + 404 328 764 901 600 π 4 205 642 763 133 709 440 n 10 1395 682 995 882 560 π 2 14 111 259 282 519 168 n 11 70 791 568 265 600 π 2 561 627 506 872 320 + 9613 350 182 400 n 12 ,
v 2 ( n ) = 7807 148 158 935 121 920 π 6 2162 354 645 205 998 496 π 8 + 7572 578 305 219 200 π 10 + 1121 295 004 578 000 π 12 n 13 323 896 677 988 735 040 π 2 320 046 917 588 428 536 π 4 + 23 775 231 197 104 976 820 π 6 2961 357 867 713 913 162 π 8 + 20 571 609 341 185 980 π 10 + 320 370 001 308 000 π 12 21 891 914 231 440 417 920 + n 2 20 365 126 464 702 573 972 π 4 67 383 733 762 390 755 600 π 2 + 13 875 766 437 278 252 430 π 6 1388 445 570 068 766 517 π 8 + 11 759 111 700 596 820 π 10 + 117 918 923 506 217 715 168 n 3 129 486 535 706 936 180 520 π 2 43 967 682 856 815 448 500 π 4 + 5492 044 920 925 054 800 π 6 206 327 416 429 268 585 π 8 + 1896 832 197 183 000 π 10 251 658 474 049 928 022 000 + n 4 11 052 773 724 731 216 940 π 4 123 816 433 532 411 167 240 π 2 642 142 704 745 267 110 π 6 + 2196 145 987 840 420 π 8 + 284 685 295 197 739 294 320 + n 5 4710 286 363 091 648 724 π 4 64 081 261 404 742 332 520 π 2 + 195 131 163 348 702 900 π 6 2953 941 073 691 300 π 8 + 190 785 062 839 205 105 040 + n 6 1406 411 174 117 160 288 π 4 18 485 395 719 485 208 360 π 2 30 893 407 714 473 480 π 6 + 79 669 465 375 847 921 904 n 7 3103 784 835 251 250 480 π 2 114 706 151 190 370 080 π 4 + 2307 154 639 851 600 π 21 175 652 287 823 806 080 + n 8 5093 062 020 192 960 π 4 335 393 616 555 370 560 π 2 + 3603 872 610 786 127 680 n 9 27 765 067 696 861 440 π 2 + 697 962 748 190 400 π 4 392 321 352 145 578 240 n 10 2409 264 004 864 640 π 2 26 921 192 060 598 528 n 11 122 202 232 006 400 π 2 1071 462 275 358 720 + 18 340 166 630 400 n 12 ,
u 3 ( n ) = 72 076 640 709 427 200 π 6 29 071 894 717 733 472 π 8 + 115 357 489 416 000 π 10 + 17 673 562 746 000 π 12 n 123 008 004 223 646 400 π 2 2954 716 142 126 760 π 4 + 219 496 128 662 048 700 π 6 39 814 137 030 010 134 π 8 + 313 379 289 219 150 π 10 + 5049 589 356 000 π 12 346 255 618 730 797 440 + n 2 188 013 583 618 045 020 π 4 622 095 683 235 246 000 π 2 + 128 102 939 986 225 050 π 6 18 667 032 035 578 619 π 8 + 179 133 387 449 850 π 10 + 1865 076 273 689 954 976 n 3 1195 437 094 424 278 200 π 2 405 915 555 281 197 500 π 4 + 50 703 296 577 318 000 π 6 2773 980 179 945 095 π 8 + 28 895 548 027 500 π 10 3980 381 053 926 354 000 + n 4 102 040 691 989 212 900 π 4 1143 089 949 359 373 400 π 2 5928 347 723 378 850 π 6 + 29 526 204 262 940 π 8 + 4502 753 025 164 172 240 + n 5 43 485 996 540 557 340 π 4 591 606 814 735 598 200 π 2 + 1801 477 116 301 500 π 6 39 714 421 539 100 π 8 + 3017 570 746 879 199 280 n 6 170 659 656 832 572 600 π 2 12 984 176 913 634 080 π 4 + 285 212 090 611 800 π 6 1260 099 949 964 539 728 n 7 28 654 558 598 806 800 π 2 1058 982 598 792 800 π 4 + 21 299 961 606 000 π 6 334 926 791 117 170 560 + n 8 47 019 832 833 600 π 4 3096 398 928 849 600 π 2 + 57 001 006 283 981 760 n 9 256 330 835 270 400 π 2 + 6443 685 864 000 π 4 6205 189 326 631 680 n 10 22 242 648 982 400 π 2 425 801 687 114 496 n 11 1128 187 424 000 π 2 16 946 888 663 040 + 290 079 052 800 n 12 ,
v 3 ( n ) = 1669 121 811 142 410 240 π 6 680 934 843 538 735 104 π 8 + 2709 701 944 934 400 π 10 + 415 442 829 312 000 π 12 n 2848 569 810 883 706 880 π 2 68 424 126 180 360 192 π 4 + 5083 002 928 620 503 040 π 6 932 544 419 013 132 288 π 8 + 7361 155 949 199 360 π 10 + 118 697 951 232 000 π 12 4112 397 286 904 954 880 + n 2 4353 942 832 506 077 184 π 4 14 406 241 235 514 163 200 π 2 + 2966 556 280 896 552 960 π 6 437 227 523 761 143 808 π 8 + 4207 772 645 130 240 π 10 + 22 151 076 236 416 253 952 n 3 27 683 450 678 512 189 440 π 2 9400 028 915 515 392 000 π 4 + 1174 166 517 488 025 600 π 6 64 973 397 095 383 040 π 8 + 678 745 030 656 000 π 10 47 274 058 127 966 208 000 + n 4 2363 017 240 355 143 680 π 4 26 471 216 579 934 945 280 π 2 137 286 288 480 337 920 π 6 + 691 575 883 694 080 π 8 + 53 478 148 288 720 404 480 + n 5 1007 031 190 558 998 528 π 4 13 700 192 300 534 333 440 π 2 + 41 717 881 375 948 800 π 6 930 208 838 451 200 π 8 + 35 838 984 499 361 218 560 n 6 3952 067 586 635 857 920 π 2 300 682 338 590 785 536 π 4 + 6604 826 703 298 560 π 6 14 965 913 432 561 811 456 n 7 663 570 725 205 442 560 π 2 24 523 492 436 213 760 π 4 + 493 255 930 675 200 π 6 3977 847 441 582 981 120 + n 8 1088 866 347 909 120 π 4 71 705 159 081 656 320 π 2 + 676 987 667 239 403 520 n 9 5936 006 226 247 680 π 2 + 149 220 281 548 800 π 4 73 697 587 479 183 360 n 10 515 086 305 198 080 π 2 5057 147 402 452 992 n 11 26 126 109 900 800 π 2 201 274 247 086 080 + 3445 201 305 600 n 12
In order to prove the fact h ( n ) > 0 for all n 10 , we only need to prove
2 2 n > 3 v 1 ( n ) 32 u 1 ( n ) ,
2 2 n > 4 v 2 ( n ) u 2 ( n ) ,
2 2 n > v 3 ( n ) 768 u 3 ( n ) .
By mathematical induction we can prove the inequality (14). First, the inequality (14) is obviously true for n = 10 . Let’s assume that (14) holds for n = m 10 , that is,
2 2 m > 3 v 1 ( m ) 32 u 1 ( m )
holds. In the following we shall prove that (14) holds for n = m + 1 . Since
2 2 m + 2 = 4 × 2 2 m > 4 × 3 v 1 ( m ) 32 u 1 ( m ) ,
we can complete the proof of (14) when showing that
A B : = 4 × v 1 ( m ) u 1 ( m ) > v 1 ( m + 1 ) u 1 ( m + 1 ) : = C D .
In fact,
A D B C = : k = 0 24 c k m 10 k > 0
due to
c 0 = 432 477 072 562 034 020 909 738 451 869 462 850 857 670 400 000 π 2 + 36 333 844 528 776 677 085 760 862 383 653 680 730 240 000 π 4 1096 660 044 119 881 173 039 606 612 032 659 496 064 000 π 6 + 22 603 628 786 951 665 158 157 246 354 946 557 617 600 π 8 177 081 693 090 107 277 506 917 029 813 967 593 600 π 10 + 1011 386 182 849 460 538 599 746 017 498 399 960 π 12 + 15 735 694 892 973 599 257 277 408 544 518 940 π 14 + 164 925 177 170 381 951 496 845 513 459 706 π 16 + 833 787 102 925 329 026 898 819 379 985 π 18 + 2735 552 245 409 728 360 495 799 625 π 20 + 5698 553 429 932 956 286 470 000 π 22 + 5024 135 096 342 834 062 500 π 24 + 2024 606 215 325 539 212 345 231 880 222 924 263 936 000 000 , c 1 = 36 9259 092 928 588 108 213 738 157 014 254 288 967 190 784 000 π 2 + 666 781 730 666 771 801 641 859 416 284 587 094 918 566 400 π 4 17 704 367 485 003 756 899 701 481 245 215 081 272 940 800 π 6 + 349 609 143 706 987 180 240 936 965 504 219 114 769 920 π 8 2292 786 547 993 054 490 216 376 074 770 576 241 280 π 10 + 16 985 127 930 125 982 303 297 749 052 630 548 352 π 12 + 238 405 063 890 342 212 113 531 066 361 567 640 π 14 + 2056 775 089 232 944 789 108 129 630 992 300 π 16 + 8718 404 153 959 968 277 275 906 816 475 π 18 + 23 361 306 381 577 748 319 512 467 950 π 20 + 34 836 030 692 240 124 305 070 000 π 22 + 17 313 942 485 858 382 000 000 π 24 + 40 333 285 172 958 894 033 508 595 153 841 536 752 427 520 000 , c 2 = 30 8600 405 454 695 740 217 297 202 993 698 878 218 858 777 600 π 2 + 585 851 470 657 954 967 766 279 287 854 352 057 781 666 816 π 4 13 420 979 649 772 297 096 274 328 067 880 241 801 173 760 π 6 + 256 664 843 747 929 290 271 675 413 219 724 391 636 448 π 8 1318 191 158 762 232 633 137 332 745 334 314 955 072 π 10 + 13 361 650 095 808 114 588 512 739 955 776 612 716 π 12 + 164 357 094 665 669 167 870 687 737 363 349 914 π 14 + 1153 393 325 332 854 286 640 222 711 239 803 π 16 + 4011 026 782 712 020 246 552 983 942 479 π 18 + 8301 133 858 901 607 698 296 592 250 π 20 + 7938 314 104 745 805 365 718 000 π 22 + 1484 052 213 073 575 600 000 π 24 + 38 392 471 102 288 701 428 746 670 282 674 730 459 011 522 560 ,
c 3 = 3 42 406 595 192 953 714 239 088 120 732 295 910 168 515 013 120 π 2 + 2735 291 565 968 835 971 679 114 298 266 471 264 749 820 288 π 4 52 741 670 654 846 269 236 778 650 448 648 201 209 274 560 π 6 + 993 185 948 970 726 744 747 604 136 369 383 526 789 664 π 8 3555 997 306 232 206 297 388 095 624 723 723 524 000 π 10 + 54 062 406 959 239 828 489 920 937 977 121 874 508 π 12 + 566 940 597 003 240 042 350 635 238 785 548 750 π 14 + 3187 649 409 611 680 011 798 317 927 299 165 π 16 + 8804 865 616 400 119 163 677 040 780 860 π 18 + 13 053 672 727 689 667 172 707 162 800 π 20 + 6659 045 394 142 410 022 320 000 π 22 + 193 654 905 206 289 056 409 840 361 351 472 752 548 845 829 120 , c 4 = 3 14 955 148 798 977 736 804 103 569 755 902 321 698 803 321 600 π 2 + 915 015 308 159 362 839 386 515 084 161 748 493 858 700 288 π 4 14 378 012 135 982 618 092 933 419 839 668 648 672 422 080 π 6 + 273 349 592 197 748 554 354 724 042 991 362 976 034 704 π 8 529 593 588 850 577 904 103 989 040 346 522 699 600 π 10 + 15 009 655 217 430 104 938 947 296 447 083 454 608 π 12 + 130 599 893 877 570 912 079 553 672 496 420 350 π 14 + 575 949 029 053 184 203 059 736 727 251 211 π 16 + 1205 272 758 255 181 883 607 894 742 430 π 18 + 1145 672 964 077 124 655 646 345 700 π 20 + 208 140 442 125 042 042 000 000 π 22 + 69 735 333 795 425 763 249 955 129 532 712 165 446 253 789 696 , c 5 = 33 364 971 673 005 972 619 541 275 786 034 588 814 464 538 240 π 2 + 21 235 642 834 673 600 746 560 066 559 308 986 044 337 760 π 4 260 272 720 784 174 227 696 306 689 234 131 950 815 600 π 6 + 5185 831 288 296 271 982 221 695 502 649 477 464 680 π 8 1517 338 330 433 370 798 176 501 636 490 316 880 π 10 + 273 963 079 484 107 283 718 813 263 942 928 076 π 12 + 1922 123 655 099 304 273 410 851 708 056 570 π 14 + 6447 000 532 486 188 914 092 761 900 225 π 16 + 9531 698 924 412 844 816 314 398 900 π 18 + 4816 843 709 968 452 110 760 000 π 20 + 1734 512 417 114 596 725 446 236 927 443 944 851 936 945 920 , c 6 = 165 15 498 197 959 547 487 369 746 919 409 739 057 432 616 768 π 2 + 860 371 404 359 307 357 300 924 677 133 234 543 516 864 π 4 7722 153 657 761 174 093 282 743 885 994 122 481 136 π 6 + 170 744 152 763 792 675 021 128 653 134 791 925 376 π 8 + 210 214 671 864 247 349 408 272 379 185 208 784 π 10 + 8181 588 172 460 856 740 957 493 021 360 356 π 12 + 44 801 413 876 306 265 313 159 782 036 522 π 14 + 109 236 316 154 736 833 622 723 890 241 π 16 + 102 352 853 202 229 552 240 678 640 π 18 + 18 242 791 857 206 659 890 000 π 20 + 74 932 250 091 965 019 743 988 691 424 419 505 579 968 128 ,
c 7 = 132 3336 483 320 624 550 277 082 804 821 179 295 650 189 120 π 2 + 177 423 483 418 269 848 617 086 554 241 647 021 814 744 π 4 1054 313 446 926 034 572 685 791 686 663 751 857 520 π 6 + 28 435 416 737 882 498 941 385 585 576 136 821 888 π 8 + 70 884 370 014 078 824 758 070 811 714 152 740 π 10 + 1151 438 819 679 557 596 009 052 527 626 068 π 12 + 4727 935 854 230 453 222 127 552 968 555 π 14 + 7829 247 889 431 961 426 897 274 700 π 16 + 3850 065 296 847 814 425 825 500 π 18 + 16 384 197 077 544 879 182 425 462 583 508 872 540 455 680 , c 8 = 132 474 242 872 953 666 237 583 921 762 124 208 248 951 760 π 2 + 24 264 409 040 721 159 948 864 583 225 281 930 027 504 π 4 78 402 560 531 987 172 021 983 078 009 066 260 920 π 6 + 3114 682 925 218 861 740 201 767 089 397 817 568 π 8 + 10 489 929 857 119 997 818 261 682 505 350 280 π 10 + 98 088 835 968 824 635 053 831 799 950 513 π 12 + 286 554 414 340 316 246 294 571 853 510 π 14 + 289 431 461 545 719 136 085 136 750 π 16 + 49 260 491 111 811 084 525 000 π 18 + 2362 007 630 426 151 607 945 908 367 872 419 621 154 144 , c 9 = 1320 5629 877 288 570 319 416 997 038 146 969 516 556 832 π 2 + 278 442 060 045 992 946 080 707 207 531 074 123 396 π 4 253 292 501 283 486 387 462 068 625 056 270 430 π 6 + 28 270 385 849 322 427 748 766 607 916 610 979 π 8 + 107 046 143 835 094 422 774 951 890 666 596 π 10 + 628 570 656 348 882 755 440 623 147 684 π 12 + 1213 867 590 548 404 875 329 886 800 π 14 + 619 538 560 057 063 391 389 750 π 16 + 28 411 534 488 704 240 841 370 947 744 349 251 289 824 , c 10 = 2640 281 331 583 582 014 611 449 980 637 041 769 931 436 π 2 + 13 510 570 740 017 929 393 709 981 880 756 475 284 π 4 + 13 087 642 759 352 321 650 198 647 418 555 857 π 6 + 1064 155 448 978 148 256 227 645 686 806 861 π 8 + 3997 026 049 205 628 330 034 092 483 580 π 10 + 14 904 436 197 642 393 080 361 285 029 π 12 + 17 024 945 059 305 125 246 624 430 π 14 + 2897 785 783 916 157 035 125 π 16 + 1437 953 217 456 186 736 325 001 905 444 225 594 136 , c 11 = 96 654 142 166 808 161 291 482 752 284 899 283 952 120 π 2 + 30 622 350 854 820 437 346 460 584 814 635 483 927 π 4 + 72 647 894 779 938 686 582 882 719 829 927 595 π 6 + 1817 767 836 009 184 023 588 819 061 194 702 π 8 + 6102 125 876 861 689 812 210 796 065 620 π 10 + 13 944 810 933 176 636 180 593 961 600 π 12 + 7793 968 097 768 424 002 835 250 π 14 + 3387 419 372 637 281 269 675 203 706 863 313 900 560 ,
c 12 = 192 23 448 273 103 738 305 639 345 475 800 400 670 145 π 2 + 1073 000 636 718 656 551 244 165 531 387 881 431 π 4 + 3537 234 644 266 436 071 857 010 425 022 050 π 6 + 46 060 244 426 147 238 364 390 717 134 786 π 8 + 125 088 476 859 641 817 643 384 089 420 π 10 + 160 886 574 944 092 901 528 877 625 π 12 + 29 074 440 554 757 759 078 750 π 14 + 123 179 632 897 044 306 386 027 545 261 215 114 294 , c 13 = 1920 142 512 239 971 185 783 671 360 961 222 010 803 π 2 + 6381 902 474 805 353 580 527 764 618 726 671 π 4 + 24 025 453 176 262 392 534 800 825 080 200 π 6 + 187 106 225 790 007 458 438 906 057 128 π 8 + 368 869 412 666 063 388 113 272 660 π 10 + 225 472 297 847 063 882 873 300 π 12 + 761 394 621 013 098 460 862 455 421 333 712 000 , c 14 = 3840 3661 949 524 532 302 117 959 247 029 761 739 π 2 + 160 288 394 718 581 152 122 551 619 251 667 π 4 + 613 223 170 928 199 896 028 344 483 994 π 6 + 2968 196 572 317 252 224 510 234 552 π 8 + 3705 409 180 239 129 445 272 060 π 10 + 724 592 963 261 234 153 625 π 12 + 19 979 501 787 561 082 580 106 002 588 049 444 , c 15 = 16 896 35 978 247 257 137 216 758 065 815 515 375 π 2 + 1532 726 528 655 032 867 385 038 505 066 π 4 + 5441 621 946 243 633 291 744 787 950 π 6 + 16 080 285 251 594 580 782 740 150 π 8 + 10 324 423 800 377 796 581 500 π 10 + 201 696 230 866 728 389 067 234 661 444 560 , c 16 = 67 584 324 384 222 357 330 712 997 593 014 615 π 2 + 13 337 410 857 823 397 206 189 989 309 π 4 + 40 326 199 296 784 791 667 944 120 π 6 + 67 638 374 749 826 629 884 125 π 8 + 14 563 211 542 748 706 250 π 10 + 1885 127 045 277 192 968 136 557 300 967 ,
c 17 = 1013 760 642 785 638 178 810 588 749 900 158 π 2 + 25 150 395 742 996 351 629 888 498 π 4 + 58 845 770 244 082 231 841 370 π 6 + 47 711 575 106 631 655 975 π 8 + 3920 991 972 850 346 056 633 649 952 , c 18 = 6082 560 2578 876 374 474 054 585 889 758 π 2 + 93 892 348 055 183 622 493 182 π 4 + 149 964 428 634 529 802 305 π 6 + 39 786 653 594 457 875 π 8 + 16 807 275 050 343 112 745 119 008 , c 19 = 4055 040 73 520 039 656 935 692 234 682 π 2 + 2403 072 677 327 868 116 495 π 4 + 2150 159 715 906 956 775 π 6 + 525 199 288 403 727 204 596 784 , c 20 = 1622 016 2654 056 221 052 595 612 805 π 2 + 73 331 459 824 530 209 275 π 4 + 24 215 563 398 048 750 π 6 + 21 598 998 856 016 744 526 858 , c 21 = 600 145 920 73 933 454 572 793 875 π 2 + 1540 752 654 978 775 π 4 + 729 733 152 472 938 432 , c 22 = 20 186 726 400 14 400 815 186 065 π 2 + 170 333 752 225 π 4 + 193 626 789 624 684 , c 23 = 22 182 474 098 824 445 952 000 909 492 677 357 322 240 000 π 2 , c 24 = 60 140 654 614 609 920 000
are all positive.
We can prove (15) and (16) in a same way. This completes the proof of Lemma 3. □
Lemma 4.
The function
q ( x ) = 86 048 790 528 x + 19 300 663 296 x 3 + 344 139 832 320 x + 107 890 544 640 x 3 7832 862 720 x 5 1 cos 2 x + 516 126 753 792 x 462 262 103 040 x 3 + 44 561 252 352 x 5 1 cos 4 x + 344 029 172 736 x + 594 343 956 480 x 3 96 517 152 768 x 5 1 cos 6 x + 85 993 460 736 x 329 967 098 880 x 3 + 114 528 079 872 x 5 1570 078 720 x 7 1 cos 8 x + 70 694 037 504 x 3 61 197 136 896 x 5 + 3728 936 960 x 7 1 cos 10 x + 6457 820 160 x 5 3189 222 400 x 7 1 cos 12 x
28 548 897 792 + 20 104 857 600 x 2 sin x cos x + 85 646 693 376 150 623 247 360 x 2 9010 511 872 x 4 sin x cos 3 x + 85 646 693 376 + 467 203 461 120 x 2 132 699 697 152 x 4 + 3491 758 080 x 6 sin x cos 5 x + 28 548 897 792 402 117 749 760 x 2 + 259 354 011 648 x 4 19 975 766 016 x 6 sin x cos 7 x + 105 642 393 600 x 2 145 966 994 432 x 4 + 20 627 970 048 x 6 sin x cos 9 x + 28 323 191 808 x 4 18 861 972 480 x 6 sin x cos 11 x + 630 835 200 x 6 sin x cos 13 x > 0
for all x 0 , π / 2 .
Proof. 
Substituting the power series expansions of the functions in Lemma 1 into the above function q ( x ) , we can obtain that
q x = n = 13 128 51 975 2 2 n 2 2 n 1 n n 1 n 2 n 3 2 n 1 2 n 3 2 n 5 3972 255 719 n + 975 298 043 n 2 + 119 348 066 n 3 + 9013 940 n 4 + 273 800 n 5 + 4337 509 922 2 n ! | B 2 n | x 2 n 7 n = 12 256 31 185 2 2 n 2 2 n 1 n 1 n 2 2 n 1 2 n 3 21 424 923 714 n + 106 199 680 013 n 2 + 29 104 373 962 n 3 + 5754 341 861 n 4 + 287 653 546 n 5 + 13 531 196 n 6 + 4983 160 n 7 78 833 018 880 2 n ! | B 2 n | x 2 n 5 n = 11 512 1575 2 2 n 2 2 n 1 n 1 2 n 1 235 651 730 736 n 33 025 650 306 n 2 + 3130 559 589 n 3 7385 775 931 n 4 532 796 430 n 5 85 080 020 n 6 + 5749 800 n 7 + 268 271 646 720 2 n ! | B 2 n | x 2 n 3 n = 10 1024 945 2 2 n 2 2 n 1 470 063 451 466 n 274 339 736 559 n 2 + 108 583 995 240 n 3 + 12 695 894 043 n 4 3857 965 770 n 5 + 610 797 924 n 6 + 45 615 080 n 7 154 356 228 096 2 n ! | B 2 n | x 2 n 1 n = 9 2048 14 175 2 2 n 2 2 n 1 696 701 943 469 n + 686 534 439 246 n 2 162 124 945 195 n 3 + 10 984 853 040 n 4 + 2580 701 900 n 5 + 335 369 274 198 2 n ! | B 2 n | x 2 n + 1 n = 8 16 384 10 395 2 2 n 2 n 1 103 795 397 n + 345 227 575 n 2 622 029 234 2 2 n 1 2 n ! | B 2 n | x 2 n + 3 n = 7 12 560 629 760 33 2 2 n 2 n 1 2 2 n 1 2 n ! | B 2 n | x 2 n + 5
= n = 10 128 51 975 2 2 n + 6 2 2 n + 6 1 n 2 n + 1 2 n + 3 2 n + 5 n + 1 n + 2 n + 3 14 130 836 279 n + 2610 109 397 n 2 + 252 157 346 n 3 + 13 120 940 n 4 + 273 800 n 5 + 29 051 019 788 2 n + 6 ! | B 2 n + 6 | x 2 n 1 n = 10 256 31 185 2 2 n + 4 2 2 n + 4 1 n 2 n + 1 2 n + 3 n + 1 1007 457 799 854 n + 448 538 582 689 n 2 + 91 600 811 650 n 3 + 10 838 033 881 n 4 + 868 613 338 n 5 + 83 295 436 n 6 + 4983 160 n 7 + 724 428 764 568 2 n + 4 ! | B 2 n + 4 | x 2 n 1 n = 10 512 1575 2 2 n + 2 2 2 n + 2 1 n 2 n + 1 324 988 669 975 n 74 432 045 925 n 2 33 240 865 835 n 3 11 124 715 381 n 4 922 530 750 n 5 44 831 420 n 6 + 5749 800 n 7 5273 077 314 2 n + 2 ! | B 2 n + 2 | x 2 n 1 n = 10 1024 945 2 2 n 2 2 n 1 470 063 451 466 n 274 339 736 559 n 2 + 108 583 995 240 n 3 + 12 695 894 043 n 4 3857 965 770 n 5 + 610 797 924 n 6 + 45 615 080 n 7 154 356 228 096 2 n ! | B 2 n | x 2 n 1 n = 10 2048 14 175 2 2 n 2 2 2 n 2 1 2587 181 560 206 n + 1213 011 374 071 n 2 180 257 338 355 n 3 1918 656 460 n 4 + 2580 701 900 n 5 + 1889 134 753 248 2 n 2 ! | B 2 n 2 | x 2 n 1 n = 10 16 384 10 395 2 2 n 4 2 2 n 4 1 2 n 5 1277 114 903 n + 345 227 575 n 2 + 551 290 272 2 n 4 ! | B 2 n 4 | x 2 n 1 n = 10 12 560 629 760 33 2 n 7 2 2 n 6 2 2 n 6 1 2 n 6 ! | B 2 n 6 | x 2 n 1 : = n = 10 a n x 2 n 1 ,
where a n ( n 10 ) are defined as Lemma 3. From Lemma 3 we have a n > 0 for all n 10 , which completes the proof of this Lemma. □
Lemma 5.
Let 0 < x < π / 2 , and
P 1 ( x ) = 10 21 x sin 2 x + 21 x sin 4 x 1577 cos x sin 3 x + 1577 cos x sin 5 x + 185 x 3 + 1413 x 2 cos x sin x 960 x 2 cos x sin 3 x , P 2 ( x ) = 3201 x sin 2 x + 3273 x sin 4 x 6474 x sin 6 x + 5893 cos x sin 3 x 5893 cos x sin 5 x + 1554 x 3 sin 2 x + 1184 x 3 sin 4 x 1813 x 3 7281 x 2 cos x sin x + 15 972 x 2 cos x sin 3 x 3984 x 2 cos x sin 5 x . .
Then
x sin x 6 5 < P 1 ( x ) P 2 ( x ) .
Proof. 
Let
P ( x ) = ln P 1 ( x ) P 2 ( x ) 6 5 ln x sin x , 0 < x < π 2 .
Then
P ( x ) = P 1 ( x ) P 2 ( x ) P 1 ( x ) P 2 ( x ) P 1 ( x ) P 2 ( x ) 6 5 sin x x cos x x sin x = 5 x sin x P 1 ( x ) P 2 ( x ) P 1 ( x ) P 2 ( x ) 6 P 1 ( x ) P 2 ( x ) sin x x cos x 5 x sin x P 1 ( x ) P 2 ( x ) : = cos 13 x q ( x ) 2560 x sin x P 1 ( x ) P 2 ( x ) ,
where q ( x ) is defined as Lemma 4. From Lemma 4 we have P ( x ) > 0 for all x 0 , π / 2 . Considering the fact P ( 0 + ) = 0 , we have completed the proof of Lemma 5. □

3. Proof of Theorem 1

Proof. 
Let x 0 , π / 2 and
F ( x ) = ln 16 7875 x 6 tan x x 5 4 ln 2 x sin x 6 5 + x tan x 3 5 .
Then
F ( x ) : = f ( x ) 20 x tan x sin 2 x 2 sin x tan x x tan x 2 5 x tan x x sin x 5 x tan x 2 5 x sin x ,
where
f ( x ) = tan 3 x x tan x 2 5 10 sin x 5 x + 19 cos x sin x x x sin x 1 5 25 x + 24 x cos 2 x + 71 cos x sin x x cos x 37 x + 83 cos x sin x tan x x 2 5 .
In the following we shall prove f ( x ) > 0 , which is
10 sin x 5 x + 19 cos x sin x x x sin x 1 5 25 x + 24 x cos 2 x + 71 cos x sin x > x cos x 37 x + 83 cos x sin x tan x x 2 5 .
Let
G ( x ) = ln 10 sin x 5 x + 19 cos x sin x x x sin x 1 5 25 x + 24 x cos 2 x + 71 cos x sin x ln x cos x 37 x + 83 cos x sin x tan x x 2 5 .
Then
G ( x ) : = 3 sin x x sin x 4 5 H ( x ) 5 x cos x 37 x + 83 cos x sin x 50 x sin 2 x x sin x 4 5 + 190 cos x sin 3 x x sin x 4 5 24 x 3 cos 2 x + 25 x 3 + 71 x 2 cos x sin x ,
where
H ( x ) = P 1 ( x ) x sin x 6 5 P 2 ( x ) = P 2 ( x ) P 1 ( x ) P 2 ( x ) x sin x 6 5 ,
P 1 ( x ) and P 2 ( x ) are defined as Lemma 5. From Lemma 5 we obtain that H ( x ) > 0 for all x 0 , π / 2 , which leads to G ( x ) > 0 . Since G ( 0 + ) = 0 we get G ( x ) > G ( 0 + ) = 0 for all x 0 , π / 2 . So f ( x ) > 0 and F ( x ) > 0 . Taking the fact F ( 0 + ) = 0 we have F ( x ) > F ( 0 + ) = 0 for all x 0 , π / 2 .
The proof of Theorem 1 is completed. □

Funding

This paper is supported by the Natural Science Foundation of China grants No. 61772025.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The author is grateful to anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Wilker, J.B. Problem E 3306. Am. Math. Mon. 1989, 96, 55. [Google Scholar]
  2. Sumner, J.S.; Jagers, A.A.; Vowe, M.; Anglesio, J. Inequalities involving trigonometric functions. Am. Math. Mon. 1991, 98, 264–267. [Google Scholar]
  3. Pinelis, I. L’Hôspital rules for monotonicity and the Wilker-Anglesio inequality. Am. Math. Mon. 2004, 111, 905–909. [Google Scholar] [CrossRef]
  4. Bercu, G. Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, 2016, 99. [Google Scholar] [CrossRef] [Green Version]
  5. Bercu, G. The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 2017, 11, 181–191. [Google Scholar] [CrossRef] [Green Version]
  6. Bercu, G. Fourier series method related to f Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 2019, 22, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
  7. Bercu, G. Sharp bounds on the sinc function via the Fourier series method. J. Math. Inequal. 2019, 13, 495–504. [Google Scholar] [CrossRef] [Green Version]
  8. Wu, Y.T.; Bercu, G. New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method. RACSAM 2021, 115, 87. [Google Scholar] [CrossRef]
  9. Bagul, Y.J.; Chesneau, C. Two double sided inequalities involving sinc and hyperbolic sinc functions. Int. J. Open Probl. Compt. Math. 2019, 12, 15–20. [Google Scholar]
  10. Bagul, Y.J.; Chesneau, C. Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions. CUBO Math. J. 2019, 21, 21–35. [Google Scholar] [CrossRef] [Green Version]
  11. Yang, Z.-H.; Chu, Y.M.; Wang, M.K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015, 428, 587–604. [Google Scholar] [CrossRef]
  12. Yang, Z.-H.; Tian, J.F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364. [Google Scholar] [CrossRef]
  13. Yang, Z.-H.; Chu, Y.M.; Zhang, X.H. Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 2015, 268, 1177–1198. [Google Scholar] [CrossRef]
  14. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.-H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  15. Yang, Z.-H.; Chu, Y.-M. Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, 2014, 166. [Google Scholar] [CrossRef] [Green Version]
  16. Chu, H.H.; Yang, Z.H.; Chu, Y.M.; Zhang, W. Generalized Wilker-type inequalities with two parameters. J. Inequal. Appl. 2016, 2016, 187. [Google Scholar] [CrossRef] [Green Version]
  17. Sun, H.; Yang, Z.-H.; Chu, Y.-M. Necessary and sufficient conditions for the two parameter generalized Wilker-type inequalities. J. Inequal. Appl. 2016, 2016, 322. [Google Scholar] [CrossRef] [Green Version]
  18. Yang, Z.-H. Refinements of a two-sided inequality for trigonometric functions. J. Math. Inequal. 2013, 7, 601–615. [Google Scholar] [CrossRef] [Green Version]
  19. Yang, Z.-H. Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, 2013, 541. [Google Scholar] [CrossRef] [Green Version]
  20. Zhu, L. New inequalities of Wilker’s type for hyperbolic functions. AIMS Math. 2020, 5, 376–384. [Google Scholar] [CrossRef]
  21. Zhu, L.; Sun, Z.-J. Refinements of Huygens- and Wilker- type inequalities. AIMS Math. 2020, 5, 2967–2978. [Google Scholar] [CrossRef]
  22. Zhu, L. New Cusa-Huygens type inequalities. AIMS Math. 2020, 5, 5320–5331. [Google Scholar] [CrossRef]
  23. Wu, S.-H.; Li, S.-G. Sharpened versions of Mitrinovic -Adamovic, Lazarevic and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
  24. Wu, S.-H.; Srivastava, H.M. A weighted and exponential generalization of Wilker’s inequality and its applications. Int. Trans. Spec. Funct. 2008, 18, 529–535. [Google Scholar] [CrossRef]
  25. Chen, C.-P. Sharp Wilker and Huygens type inequalities for inverse trigonometric and inverse hyperbolic functions. Int. Trans. Spec. Funct. 2012, 23, 865–873. [Google Scholar] [CrossRef]
  26. Chen, C.-P.; Cheung, W.-S. Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem. Int. Trans. Spec. Funct. 2012, 23, 325–336. [Google Scholar] [CrossRef]
  27. Huang, W.-K.; Chen, X.-D.; Mao, X.-Y.; Chen, L.-Q. New inequalities for hyperbolic functions based on reparameterization. RACSAM 2021, 115, 3. [Google Scholar] [CrossRef]
  28. Mortici, C. The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 2011, 14, 535–541. [Google Scholar] [CrossRef] [Green Version]
  29. Mortici, C. A Subtly Analysis of Wilker Inequality. Appl. Math. Comput. 2014, 231, 516–520. [Google Scholar] [CrossRef] [Green Version]
  30. Nenezić, M.; Malešević, B.; Mortici, C. New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 2016, 283, 299–315. [Google Scholar] [CrossRef] [Green Version]
  31. Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [Google Scholar] [CrossRef]
  32. Zhu, L. Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, 2009, 485842. [Google Scholar] [CrossRef]
  33. Wu, S.-H.; Debnath, L. A generalization of L’Hôspital-type rules for monotonicity and its application. Appl. Math. Lett. 2009, 22, 284–290. [Google Scholar] [CrossRef] [Green Version]
  34. Zhu, L. New Mitrinović–Adamović type inequalities. RACSAM 2020, 114, 119. [Google Scholar] [CrossRef]
  35. Zhu, L. An unity of Mitrinovic–Adamovic and Cusa–Huygens inequalities and the analogue for hyperbolic functions. RACSAM 2019, 113, 3399–3412. [Google Scholar] [CrossRef]
  36. Zhu, L. Sharp inequalities of Mitrinovic–Adamovic type. RACSAM 2019, 113, 957–968. [Google Scholar] [CrossRef]
  37. Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equ. 2018, 2018, 90. [Google Scholar] [CrossRef]
  38. Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 2017, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  39. Lutovac, T.; Malešević, B.; Rašajski, M. A new method for proving some inequalities related to several special functions. Results Math. 2018, 73, 100. [Google Scholar] [CrossRef] [Green Version]
  40. Malešević, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function. J. Inequal. Appl. 2017, 2017, 275. [Google Scholar] [CrossRef] [PubMed]
  41. Rašajski, M.; Lutovac, T.; Malešević, B. About some exponential inequalities related to the sinc function. J. Inequal. Appl. 2018, 2018, 150. [Google Scholar] [CrossRef]
  42. Banjac, B.; Makragić, M.; Malešević, B. Some notes on a method for proving inequalities by computer. Results Math. 2016, 69, 161–176. [Google Scholar] [CrossRef] [Green Version]
  43. Malešević, B.; Rašajski, M.; Lutovac, T. Double-sided Taylor’s approximations and their applications in Theory of analytic inequalities. In Differential and Integral Inequalities; Rassias, T.M., Andrica, D., Eds.; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2019; Volume 151, pp. 569–582. [Google Scholar] [CrossRef]
  44. Zhu, L. New inequalities of Wilker’s type for circular functions. AIMS Math. 2020, 5, 4874–4888. [Google Scholar] [CrossRef]
  45. Zhu, L. Wilker inequalities of exponential type for circular functions. RACSAM 2021, 115, 35. [Google Scholar] [CrossRef]
  46. Milovanović, G.V.; Rassias, M.T. (Eds.) Analytic Number Theory, Approximation Theory and Special Functions; Springer: New York, NY, USA, 2014. [Google Scholar]
  47. Rassias, M.T. From a cotangent sum to a generalized totient function. Appl. Anal. Discret. Math. 2017, 11, 369–385. [Google Scholar] [CrossRef]
  48. Maier, H.; Rassias, M.T. Generalizations of a cotangent sum associated to the Estermann zeta function. Commun. Contemp. Math. 2016, 18. [Google Scholar] [CrossRef] [Green Version]
  49. Milovanović, G.V. Recent Progress in Inequalities; Kluwer Academic Publishers: New York, NY, USA, 1998. [Google Scholar]
  50. Maier, H.; Rassias, M.T. The order of magnitude for moments for certain cotangent sums. J. Math. Appl. 2015, 429, 576–590. [Google Scholar] [CrossRef]
  51. Maier, H.; Rassias, M.T. The rate of growth of moments of certain cotangent sums. Aequat. Math. 2016, 90, 581–595. [Google Scholar] [CrossRef] [Green Version]
  52. Gardner, R.B. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
  53. Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Acad. Press: San Diego, CA, USA, 2004. [Google Scholar]
  54. Zwillinger, D. CRC Standard Mathematical Tables and Formulae; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
  55. Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
  56. Zhu, L. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. RACSAM 2020, 114, 83. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhu, L. High Precision Wilker-Type Inequality of Fractional Powers. Mathematics 2021, 9, 1476. https://doi.org/10.3390/math9131476

AMA Style

Zhu L. High Precision Wilker-Type Inequality of Fractional Powers. Mathematics. 2021; 9(13):1476. https://doi.org/10.3390/math9131476

Chicago/Turabian Style

Zhu, Ling. 2021. "High Precision Wilker-Type Inequality of Fractional Powers" Mathematics 9, no. 13: 1476. https://doi.org/10.3390/math9131476

APA Style

Zhu, L. (2021). High Precision Wilker-Type Inequality of Fractional Powers. Mathematics, 9(13), 1476. https://doi.org/10.3390/math9131476

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop