Gamma Generalization Operators Involving Analytic Functions
Abstract
:1. Introduction
2. Approximation Properties
3. Rate of Convergence
4. Point-Wise Estimations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szász, O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Ismail, M.E.H. On a generalization of Szász operators. Mathematica 1974, 39, 259–267. [Google Scholar]
- Jakimovski, A.; Leviatan, D. Generalized Szász operators for the approximation in the infinite interval. Mathematica 1969, 11, 97–103. [Google Scholar]
- Varma, S.; Sucu, S.; İçöz, G. Generalization of Szász operators involving Brenke type polynomials. Comput. Math. Appl. 2012, 64, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Gordon and Breach: NewYork, NY, USA, 1978. [Google Scholar]
- Sucu, S.; İçöz, G.; Varma, S. On some extensions of Szász operators including Boas-Buck-type polynomials. Abstr. Appl. Anal. 2012, 2012, 1065–1076. [Google Scholar] [CrossRef] [Green Version]
- İçöz, G.; Varma, S.; Sucu, S. Approximation by operators including generalized Appell polynomials. Filomat 2016, 30, 429–440. [Google Scholar] [CrossRef]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Smith, R.C.T. Generating functions of Appell form for the classical orthogonal polynomials. Proc. Am. Math. Soc. 1956, 7, 636–641. [Google Scholar] [CrossRef]
- Sucu, S. Dunkl analogue of Szász operators. Appl. Math. Comput. 2014, 244, 42–48. [Google Scholar] [CrossRef]
- Sucu, S.; Varma, S. Generalization of Jakimovski-Leviatan type Szász operators. Appl. Math. Comput. 2015, 270, 977–983. [Google Scholar] [CrossRef]
- Krech, G. A note on some positive linear operators associated with the Hermite polynomials. Carpathian J. Math. 2016, 32, 71–77. [Google Scholar] [CrossRef]
- Yazıcı, S.; Çekim, B. A Kantorovich type generalization of the Szász operators via two variable Hermite polynomials. Gazi Univ. J. Sci. 2017, 30, 432–440. [Google Scholar]
- Sucu, S.; Varma, S. Approximation by sequence of operators involving analytic functions. Mathematics 2019, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- İçöz, G.; Eryiğit, H. Beta generalization of Stancu-Durrmeyer operators involving a generalization of Boas-Buck type polynomials. Gazi Univ. J. Sci. 2020, 33, 715–724. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Altomare, F.; Campiti, M. Korovkin-Type Approximation Theory and Its Applications, de Gruyter Studies in Mathematics, 17; Walter de Gruyter: Berlin, Germany, 1994. [Google Scholar]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Spring: New York, NY, USA, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Q.-B.; Çekim, B.; İçöz, G. Gamma Generalization Operators Involving Analytic Functions. Mathematics 2021, 9, 1547. https://doi.org/10.3390/math9131547
Cai Q-B, Çekim B, İçöz G. Gamma Generalization Operators Involving Analytic Functions. Mathematics. 2021; 9(13):1547. https://doi.org/10.3390/math9131547
Chicago/Turabian StyleCai, Qing-Bo, Bayram Çekim, and Gürhan İçöz. 2021. "Gamma Generalization Operators Involving Analytic Functions" Mathematics 9, no. 13: 1547. https://doi.org/10.3390/math9131547
APA StyleCai, Q. -B., Çekim, B., & İçöz, G. (2021). Gamma Generalization Operators Involving Analytic Functions. Mathematics, 9(13), 1547. https://doi.org/10.3390/math9131547