On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- Since is increasing and , clearly . Then, for
- (a)
- if ;
- (b)
- any if ;
- (c)
- any arbitrarily large if ,
there exists such that - For any , there exists such that
- For , it follows from the increasing nature of that . Then, for
- (a)
- if ;
- (b)
- any if ;
- (c)
- any arbitrarily large if ,
there exists , such that
3. Main Results
3.1. Nonexistence of Solutions from the Class
- (i)
- (ii)
- and is decreasing;
- (iii)
- and is decreasing.
- (a0)
- and decrease;
- (b0)
- ;
- (c0)
- and decreases.
- (an)
- and decrease;
- (bn)
- (cn)
- and is decreasing for any .
3.2. Convergence to Zero of Kneser Solutions
3.3. Property A of (1)
4. Examples and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiguradze, I.T.; Chanturia, T.A. Asymptotic properties of solutions of nonautonomous ordinary differential equations. In Mathematics and its Applications (Soviet Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 89, p. xiv+331. [Google Scholar] [CrossRef]
- Kusano, T.; Naito, M. Comparison theorems for functional-differential equations with deviating arguments. J. Math. Soc. Jpn. 1981, 33, 509–532. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. Oscillation criteria for third-order delay differential equations. Adv. Differ. Equ. 2017, 2017, 330. [Google Scholar] [CrossRef] [Green Version]
- Saker, S. Oscillation Theory of Delay Differential and Difference Equations: Second and Third-Orders; LAP Lambert Academic Publishing: Riga, Latvia, 2010. [Google Scholar]
- Padhi, S.; Pati, S. Theory of Third-Order Differential Equations; Springer: New Delhi, India, 2014; p. xvi+507. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Aktas, M.F.; Tiryaki, A. On oscillation criteria for third-order nonlinear delay differential equations. Arch. Math. 2009, 45, 1–18. [Google Scholar]
- Agarwal, R.; Bohner, M.; Li, T.; Zhang, C. Oscillation of third-order nonlinear delay differential equations. Taiwan. J. Math. 2013, 17, 545–558. [Google Scholar] [CrossRef]
- Aktaş, M.; Tiryaki, A.; Zafer, A. Oscillation criteria for third-order nonlinear functional differential equations. Appl. Math. Lett. 2010, 23, 756–762. [Google Scholar] [CrossRef] [Green Version]
- Baculíková, B.; Elabbasy, E.M.; Saker, S.H.; Džurina, J. Oscillation criteria for third-order nonlinear differential equations. Math. Slovaca 2008, 58, 201–220. [Google Scholar] [CrossRef]
- Cecchi, M.; Došlá, Z.; Marini, M. Disconjugate operators and related differential equations. In Proceedings of the 6th Colloquium on the Qualitative Theory of Differential Equations, Szeged, Hungary, 10–14 August 1999; Volume 4, p. 17. [Google Scholar]
- Cecchi, M.; Došlá, Z.; Marini, M. Some properties of third-order differential operators. Czechoslov. Math. J. 1997, 47, 729–748. [Google Scholar] [CrossRef] [Green Version]
- Baculíková, B.; Džurina, J. Oscillation of third-order functional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 43, 1–10. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Oscillation criteria for third-order functional differential equations with damping. Electron. J. Differ. Equ. 2016, 215, 15. [Google Scholar]
- Candan, T.; Dahiya, R.S. Oscillation of third-order functional differential equations with delay. In Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations, Mississippi State, MS, USA, 18–19 May 2001; Volume 10, pp. 79–88. [Google Scholar]
- Elabbasy, E.M.; Hassan, T.S.; Elmatary, B.M. Oscillation criteria for third-order delay nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2012, 5, 11. [Google Scholar] [CrossRef]
- Grace, S.R.; Agarwal, R.P.; Pavani, R.; Thandapani, E. On the oscillation of certain third-order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar] [CrossRef]
- Saker, S.H.; Džurina, J. On the oscillation of certain class of third-order nonlinear delay differential equations. Math. Bohem. 2010, 135, 225–237. [Google Scholar] [CrossRef]
- Jadlovská, I.; Džurina, J. Kneser-type oscillation criteria for second-order half-linear delay differential equations. Appl. Math. Comput. 2020, 380, 125289. [Google Scholar] [CrossRef]
- Jadlovská, I. Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations. Appl. Math. Lett. 2020, 106, 106354. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2020, 46, 1–14. [Google Scholar] [CrossRef]
- Graef, J.R.; Jadlovská, I.; Tunç, E. Sharp asymptotic results for third-order linear delay differential equations. J. Appl. Anal. Comput. Appear 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics 2021, 9, 1675. https://doi.org/10.3390/math9141675
Jadlovská I, Chatzarakis GE, Džurina J, Grace SR. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics. 2021; 9(14):1675. https://doi.org/10.3390/math9141675
Chicago/Turabian StyleJadlovská, Irena, George E. Chatzarakis, Jozef Džurina, and Said R. Grace. 2021. "On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations" Mathematics 9, no. 14: 1675. https://doi.org/10.3390/math9141675
APA StyleJadlovská, I., Chatzarakis, G. E., Džurina, J., & Grace, S. R. (2021). On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics, 9(14), 1675. https://doi.org/10.3390/math9141675