Multiple Dedekind Type Sums and Their Related Zeta Functions
Abstract
:Contents | |
1. Introduction | 1 |
2. Twisted Barnes’ Type (h,q)-Zeta Functions | 9 |
3. Twisted (h,q)-Dedekind Type Sums | 13 |
References | 19 |
1. Introduction
- denotes the ring of integers;
- ;
- ;
- for , we denote
- is an r-th root of 1 with .
- Taking , by Proposition 2, we obtain
- If in Proposition 2, then the Raabe formula for the usual Bernoulli polynomials is given by
2. Twisted Barnes’ Type -Zeta Functions
- If , then Theorem 2 reduces to
- In addition, if , then is reduced to (cf. [16]).
- If , and , then Theorem 2 reduces to the twisted zeta functions which interpolate the twisted Bernoulli numbers:
- The above series converges for (, when ; when ), whereHence, the function is related to as follows:
3. Twisted -Dedekind Type Sums
- In [29], Simsek constructed p-adic -Dedekind sums and Hardy–Berndt type sums. In the future, we will study the properties of the twisted p-adic Dedekind sums associated with our objects of study here.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simsek, Y.; Kurt, V.; Kim, D. New approach to the complete sum of products of the twisted (h,q)-Bernoulli numbers and polynomials. J. Nonlinear Math. Phys. 2007, 14, 44–56. [Google Scholar] [CrossRef]
- Apostol, T.M. Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 1950, 17, 147–157. [Google Scholar] [CrossRef]
- Ota, K. Derivatives of Dedekind sums and their reciprocity law. J. Number Theory 2003, 98, 280–309. [Google Scholar] [CrossRef] [Green Version]
- Cenkci, M.; Can, M.; Kurt, V.; Simsek, Y. Twisted Dedekind type sums associated with Barnes’ type multiple Frobenius-Euler l-Functions. Adv. Stud. Contemp. Math. 2009, 18, 135–160. [Google Scholar]
- Hu, S.; Kim, M.-S. The p-adic analytic Dedekind sums. J. Number Theory 2017, 171, 112–127. [Google Scholar] [CrossRef]
- Bayad, A. Jacobi forms in two variables: Multiple elliptic Dedekind sums, the Kummer-Von Staudt Clausen congruences for elliptic Bernoulli functions and values of Hecke L-functions. Montes Taurus J. Pure Appl. Math. 2019, 1, 58–129. [Google Scholar]
- Kim, T. An analogue of Bernoulli numbers and their congruences. Rep. Fac. Sci. Engrg. Saga Univ. Math. 1994, 22, 21–26. [Google Scholar]
- Koblitz, N. p-Adic Analysis: A Short Course on Recent Work; London Mathematical Society Lecture Note Series; 1980; Available online: https://www.cambridge.org/cn/academic/subjects/mathematics/number-theory/p-adic-analysis-short-course-recent-work?format=PB (accessed on 26 April 2021).
- Simsek, Y. Twisted (h,q)-Bernoulli numbers and polynomials related to twisted (h,q)-zeta function and L-function. J. Math. Anal. Appl. 2006, 324, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Multiple interpolation functions of higher order (h,q)-Bernoulli numbers. AIP Conf. Proc. 2008, 1048, 486–489. [Google Scholar]
- Simsek, Y. Twisted p-adic (h,q)-L-functions. Comput. Math. Appl. 2010, 59, 2097–2110. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. Analytic Theory, Approximation Theory, and Special Functions/Families of Twisted Bernoulli Numbers, Twisted Bernoulli Polynomials, and Their Applications; Milovanovic, G.V., Rassias, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Available online: http://www.springer.com/mathematics/numbers/book/978-1-4939-0257-6?otherVersion=978-1-4939-0258-3# (accessed on 26 April 2021).
- Frobenius, G. Uber die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsberichte Der Preuss. Akad. Der Wiss. 1910, 39, 809–847. [Google Scholar]
- Apostol, T.M. Elementary Proof of the Transformation Formula for Lambert Series Involving Generalized Dedekind Sums. J. Number Theory 1982, 15, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L. q-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 1954, 76, 332–350. [Google Scholar]
- Kim, T. A new approach to q-zeta function. Adv. Stud. Contep. Math. 2005, 11, 157–162. [Google Scholar]
- Carlitz, L. The multiplication formulas for the Bernoulli and Euler polynomials. Maths. Mag. 1953, 27, 59–64. [Google Scholar] [CrossRef]
- Araci, S.; Şen, E.; Acikgoz, M. A Note on the Modified q-Dedekind Sums. Available online: https://arxiv.org/pdf/1212.5837.pdf (accessed on 26 April 2021).
- Barnes, W. The theory of the multiple gamma functions. Trans. Cambridge. Philos. Soc. 1904, 19, 374–425. [Google Scholar]
- Bayad, A.; Simsek, Y. Values of twisted Barnes zeta functions at negative integers. Russ. J. Math. Phys. 2013, 20, 129–137. [Google Scholar] [CrossRef]
- Guillera, J.; Sondow, J. Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 2008, 16, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Kim, T. Sums of products of q-Bernoulli numbers. Arch. Math. 2001, 76, 190–195. [Google Scholar] [CrossRef]
- Kim, T. Symmetry p-adic invariant integral on for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 2008, 14, 1267–1277. [Google Scholar] [CrossRef]
- Kim, T.; Jang, L.C.; Rim, S.-H.; Pak, H. On the twisted q-zeta functions and q-Bernoulli polynomials. Far East J. Appl. Math. 2003, 13, 13–21. [Google Scholar]
- Kim, T.; Rim, S.-H.; Simsek, Y.; Kim, D. On the analogs of Bernoulli and Euler numbers, related identities and zeta and l-functions. J. Korean Math. Soc. 2008, 45, 435–453. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.-M. The Multiplication formula for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transform. Spec. Funct. 2009, 20, 377–391. [Google Scholar] [CrossRef]
- Luo, Q.-M.; Srivastava, H.M. Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Shiratani, K.; Yokoyama, S. An Application of p-adic convolutions. Mem. Fac. Sci. Kyushu Univ. Ser. A Math. 1982, 36, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Simsek, Y. p-adic Dedekind and Hardy-Berndt sums related to Volkenborn integral on . In Proceedings of the 16th International Conference on Finite or Infinite Dimensional Complex, Gyeongju, Korea, 28 July–1 August 2008. [Google Scholar]
- Simsek, Y. On twisted q-Hurwitz zeta function and q-two-variable L-function. Appl. Math. Comput. 2007, 187, 466–473. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kim, T.; Simsek, Y. q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 2005, 12, 241–268. [Google Scholar]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Acedemic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayad, A.; Simsek, Y. Multiple Dedekind Type Sums and Their Related Zeta Functions. Mathematics 2021, 9, 1744. https://doi.org/10.3390/math9151744
Bayad A, Simsek Y. Multiple Dedekind Type Sums and Their Related Zeta Functions. Mathematics. 2021; 9(15):1744. https://doi.org/10.3390/math9151744
Chicago/Turabian StyleBayad, Abdelmejid, and Yilmaz Simsek. 2021. "Multiple Dedekind Type Sums and Their Related Zeta Functions" Mathematics 9, no. 15: 1744. https://doi.org/10.3390/math9151744
APA StyleBayad, A., & Simsek, Y. (2021). Multiple Dedekind Type Sums and Their Related Zeta Functions. Mathematics, 9(15), 1744. https://doi.org/10.3390/math9151744