Nadler’s Theorem on Incomplete Modular Space
Abstract
:1. Introduction
2. Notations and Background
2.1. Modular Spaces
- if and only if ,
- ,
- , for any with .
2.2. Orthogonal Modular Spaces
- Then X is said to be O-complete (-complete) if every Cauchy O-sequence (Cauchy -sequence) is convergent.Clearly, every O-complete is -complete but if X is -complete then it is not necessary to be O-complete. Also, there are O-complete spaces which are not complete.
- Let . A mapping is called:
- (i)
- Orthogonal preserving mapping if implies .
- (ii)
- O-continuous (-continuous) at if , for each O-sequence (-sequence) which . Also, T is O-continuous (-continuous) on B if T is O-continuous (-continuous) in each .
- (i)
- Orthogonal preserving mapping if implies , for every and .
- (ii)
- Suppose that for any , any sequence (sequence) converging to x, and any sequence in B such that for each n, there is a and a subsequence of that converges to z. Then f is called orthogonal upper hemicontinuous (strongly orthogonal upper hemicontinuous) and denoted as () at .
2.3. Relevant Literature
3. Main Results
- f is .
- ρ is continuous i.e., as .
- ψ is continuous and nondecreasing,
- if and only if .
- f is weakly Picard.
- f is .
- ρ is continuous.
Open Questions
4. Application to Integral Inclusions
- for all and , there exists such that
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49–65. [Google Scholar] [CrossRef]
- Musielak, J. Orlicz Spaces and Modular Spaces; Springer: Berlin, Germany, 1983; pp. 1–216. [Google Scholar]
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen Co., Ltd.: Tokyo, Japan, 1950. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. 1990, 14, 935–953. [Google Scholar] [CrossRef] [Green Version]
- Khamsi, M.A. A convexity property in modular function spaces. Math. Jpn. 1996, 44, 269–280. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M.; Shutao, C. Some geometrical properties and fixed point theorems in Orlicz spaces. J. Math. Anal. Appl. 1991, 155, 393–412. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Benavides, T.; Kaewcharoen, A.; Panyanak, B. Fixed point theorems for multivalued mappings in modular function spaces. Sci. Math. Jpn. 2006, 2006, 139–147. [Google Scholar]
- Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multivalued Caristi type mappings. J. Math. Anal. Appl. 2006, 317, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 2007, 334, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Petruşel, A.; Petruşel, G. On Reich’s strict fixed point theorem for multi-valued operators in complete metric spaces. J. Nonlinear Var. Anal. 2018, 2, 103–112. [Google Scholar]
- Kutbi, M.A.; Latif, A. Fixed points of multivalued maps in modular function spaces. Fixed Point Theory Appl. 2009, 2009, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alfuraidan, M.R. Fixed points of multivalued mappings in modular function spaces with a graph. Fixed Point Theory Appl. 2015, 1, 1–14. [Google Scholar] [CrossRef]
- Eshaghi, M.; Ramezani, M.; De La Sen, M.; Cho, Y.J. On orthogonal sets and Banach’s fixed point theorem. Fixed Point Theory 2017, 18, 569–578. [Google Scholar]
- Ramezani, M.; Baghani, H. The Meir-Keeler fixed point theorem in incomplete modular spaces with application. J. Fixed Point Theory Appl. 2017, 19, 2369–2382. [Google Scholar] [CrossRef]
- Van Dung, N. Notes on orthogonal-complete metric spaces. Bull. Aust. Math. Soc. 2021, 1–7. [Google Scholar] [CrossRef]
- Baghani, H.; Eshaghi Gordji, M.; Ramezani, M. Orthogonal sets, The axiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 2016, 18, 465–477. [Google Scholar] [CrossRef]
- Eivazi Damirchi Darsi Olia, Z.; Eshaghi, M.; Ebrahimi Bagha, D. Banach fixed point theorem on orthogonal cone metric spaces. Facta Univ. Ser. Math. Inform. 2020, 35, 1239–1250. [Google Scholar]
- Hosseini, H.; Eshaghi, M. Fixed Point Results in Orthogonal Modular Metric Spaces. Int. J. Nonlinear Anal. Appl. 2020, 11, 425–436. [Google Scholar]
- Alaca, C.; Ege, M.E.; Park, C. Fixed point results for modular ultrametric spaces. J. Comput. Anal. Appl. 2016, 20, 1259–1267. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Chaipunya, P.; Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, 2012, 503504. [Google Scholar]
- Kozlowski, W.M. Notes on modular function spaces-II. Comment. Math. 1988, 28, 101–116. [Google Scholar]
- Nourouzi, K.; Shabanian, S. Operators defined on n-modular spaces. Mediterr. J. Math. 2009, 6, 431–446. [Google Scholar] [CrossRef]
- Parvaneh, V.; Hussain, N.; Khorshidi, M.; Mlaiki, N.; Aydi, H. Fixed Point Results for Generalized -Contractions in Modular b-Metric Spaces with Applications. Mathematics 2019, 7, 887. [Google Scholar] [CrossRef] [Green Version]
- Petruşel, A. Local fixed point results for graphic contractions. J. Nonlinear Var. Anal. 2019, 3, 141–148. [Google Scholar]
- Shabanian, S. Modular Space and Fixed Point Theorems. Ph.D. Thesis, K.N.Toosi University of Technology, Tehran, Iran, 2007. [Google Scholar]
- Orlicz, W. Über eine gewisse klasse von Raumen vom Typus B. Bull. Acad. Polon. Sci. A 1932, 207–220. [Google Scholar]
- Orlicz, W. Über Raumen LM. Bull. Acad. Polon. Sci. A 1936, 93–107. [Google Scholar]
- Benavides, T.; Khamsi, M.A.; Samadi, S. Asymptotically regular mappings in modular function spaces. Sci. Math. Jpn. 2001, 4, 239–248. [Google Scholar]
- Lael, F.; Nourouzi, K. On the fixed points of correspondences in modular spaces. Int. Sch. Res. Not. 2011, 2011, 530254. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi, M.; Habibi, H. Existence and uniqueness of solutions to a first-order differential equation via fixed point theorem in orthogonal metric space. Facta Univ. Ser. Math. Inform. 2019, 34, 123–135. [Google Scholar]
- Eshaghi, M.; Habibi, H. Fixed point theory in ε-connected orthogonal metric space. Sahand Commun. Math. Anal. 2019, 16, 35–46. [Google Scholar]
- Eshaghi, M.; Habibi, H.; Sahabi, M.B. Orthogonal sets; orthogonal contractions. Asian-Eur. J. Math. 2019, 12, 1950034. [Google Scholar] [CrossRef]
- Eshaghi, M.; Habibi, H. Fixed point theory in generalized orthogonal metric space. J. Linear And Topol. Algebra 2017, 6, 251–260. [Google Scholar]
- Kassu, W.W.; Sangago, M.G.; Zegeye, H. Convergence theorems to common fixed points of multi-valued ρ-quasi-nonexpansive mappings in modular function spaces. Adv. Fixed Point Theory 2018, 8, 21–36. [Google Scholar]
- Khan, S.H. Approximating fixed point of (λ,ρ)-firmly nonexpansive mappings in modular function spaces. Arab. J. Math. 2018, 7, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Japón, M.A. Some geometric properties in modular spaces and application to fixed point theory. J. Math. Anal. Appl. 2004, 295, 576–594. [Google Scholar] [CrossRef] [Green Version]
- Brodskii, M.S.; Milman, D.P. On the center of a convex set (Russian). Dokl. Akad. Nauk. SSSR 1948, 59, 837–840. [Google Scholar]
- Japon, M.A. Applications of Musielak-Orlicz spaces in modern control systems. Teubner-Texte Math. 1988, 103, 34–36. [Google Scholar]
- Taleb, A.; Hanebaly, E. A fixed point theorem and its application to integral equations in modular function spaces. Proc. Am. Math. Soc. 2000, 128, 419–426. [Google Scholar] [CrossRef]
- Lael, F.; Shabanian, S. Convexity and boundedness relaxation for fixed point theorems in modular spaces. Appl. Gen. Topol. 2021, 22, 91–108. [Google Scholar] [CrossRef]
- Khan, M.S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Radenović, S.; Došenović, T.; Lampert, T.A.; Golubovć, Z. A note on some recent fixed point results for cyclic contractions in b-metric spaces and an application to integral equations. Appl. Math. Comput. 2016, 273, 155–164. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lael, F.; Saleem, N.; Guran, L.; Bota, M.F. Nadler’s Theorem on Incomplete Modular Space. Mathematics 2021, 9, 1927. https://doi.org/10.3390/math9161927
Lael F, Saleem N, Guran L, Bota MF. Nadler’s Theorem on Incomplete Modular Space. Mathematics. 2021; 9(16):1927. https://doi.org/10.3390/math9161927
Chicago/Turabian StyleLael, Fatemeh, Naeem Saleem, Liliana Guran, and Monica Felicia Bota. 2021. "Nadler’s Theorem on Incomplete Modular Space" Mathematics 9, no. 16: 1927. https://doi.org/10.3390/math9161927
APA StyleLael, F., Saleem, N., Guran, L., & Bota, M. F. (2021). Nadler’s Theorem on Incomplete Modular Space. Mathematics, 9(16), 1927. https://doi.org/10.3390/math9161927