Single Machine Vector Scheduling with General Penalties
Abstract
:1. Introduction
2. Preliminaries
3. SMVS with General Penalties
3.1. Hardness Result
3.2. Approximation Algorithm for a Special Case
Algorithm 1: AASC |
|
4. SMVS with Submodular Penalties
Algorithm 2: CSMSP |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, R.L. Bounds on multiprocessing timing anomalies. Siam J. Appl. Math. 1969, 17, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Hochbaum, D.S.; Shmoys, D.B. Using dual approximation algorithms for scheduling problems: Theoretical and practical results. J. ACM 1987, 34, 144–162. [Google Scholar] [CrossRef]
- Alon, N.; Azar, Y.; Woeginger, G.J.; Yadid, T. Approximation schemes for scheduling on parallel machines. J. Sched. 1998, 1, 56–66. [Google Scholar] [CrossRef]
- Jansen, K.; Klein, K.; Verschae, J. Closing the gap for makespan scheduling via sparsification techniques. Math. Oper. Res. 2020, 45, 1371–1392. [Google Scholar] [CrossRef]
- Bartal, Y.; Leonardi, S.; Marchetti-Spaccamela, A.; Sgall, J.; Stougie, L. Multiprocessor scheduling with rejection. SIAM J. Discret. Math. 2000, 13, 64–78. [Google Scholar] [CrossRef]
- Ou, J.; Zhong, X.; Wang, G. An improved heuristic for parallel machine scheduling with rejection. Eur. J. Oper. Res. 2015, 241, 653–661. [Google Scholar] [CrossRef]
- Ou, J.; Zhong, X. Bicriteria order acceptance and scheduling with consideration of fill rate. Eur. J. Oper. Res. 2017, 262, 904–907. [Google Scholar] [CrossRef]
- Shabtay, D. The single machine serial batch scheduling problem with rejection to minimize total completion time and total rejection cost. Eur. J. Oper. Res. 2014, 233, 64–74. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, L.; Yuan, J. Single machine scheduling with release dates and rejection. Eur. J. Oper. Res. 2009, 198, 975–978. [Google Scholar] [CrossRef]
- He, C.; Leung, J.Y.T.; Lee, K.; Pinedo, M.L. Improved algorithms for single machine scheduling with release dates and rejections. 4OR 2016, 14, 41–55. [Google Scholar] [CrossRef]
- Ou, J.; Zhong, X.; Li, C.L. Faster algorithms for single machine scheduling with release dates and rejection. Inf. Process. Lett. 2016, 116, 503–507. [Google Scholar] [CrossRef]
- Guan, L.; Li, W.; Xiao, M. Online algorithms for the mixed ring loading problem with two nodes. Optim. Lett. 2021, 15, 1229–1239. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Zhang, X.; Chen, Z. Penalty cost constrained identical parallel machine scheduling problem. Theor. Comput. Sci. 2015, 607, 181–192. [Google Scholar] [CrossRef]
- Liu, X.; Li, W. Approximation algorithm for the single machine scheduling problem with release dates and submodular rejection penalty. Mathematics 2020, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Mor, B.; Shapira, D. Scheduling with regular performance measures and optional job rejection on a single machine. J. Oper. Res. Soc. 2019, 71, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lu, L.; Yuan, J. Single-machine scheduling under the job rejection constraint. Theor. Comput. Sci. 2010, 411, 1877–1882. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lu, L. Parallel-machine scheduling with release dates and rejection. 4OR 2016, 14, 165–172. [Google Scholar] [CrossRef]
- Zhong, X.; Ou, J. Improved approximation algorithms for parallel machine scheduling with release dates and job rejection. 4OR 2017, 15, 387–406. [Google Scholar] [CrossRef]
- Chekuri, C.; Khanna, S. On multidimensional packing problems. SIAM J. Comput. 2004, 33, 837–851. [Google Scholar] [CrossRef]
- Meyerson, A.; Roytman, A.; Tagiku, B. Online multidimensional load balancing. In Proceedings of the 16th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, and the 17th International Workshop on Randomization and Approximation Techniques in Computer Science, Berkeley, CA, USA, 21–23 August 2013; Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 287–302. [Google Scholar]
- Im, S.; Kell, N.; Kulkarni, J.; Panigrahi, D. Tight bounds for online vector scheduling. Siam J. Comput. 2019, 48, 93–121. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N.; Oosterwijk, T.; Vredeveld, T.; Zwaan, R. Approximating vector scheduling: Almost matching upper and lower bounds. Algorithmica 2016, 76, 1077–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azar, Y.; Cohen, I.R.; Kamara, S.; Shepherd, F.B. Tight bounds for online vector bin packing. In Proceedings of the 45th annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA, 2–4 June 2013; ACM: New York, NY, USA, 2013; pp. 961–970. [Google Scholar]
- Li, W.; Cui, Q. Vector scheduling with rejection on a single machine. 4OR 2018, 16, 95–104. [Google Scholar] [CrossRef]
- Dai, B.; Li, W. Vector scheduling with rejection on two machines. Int. J. Comput. Math. 2020, 97, 2507–2515. [Google Scholar] [CrossRef]
- Halabi, M.E.; Jegelka, S. Optimal approximation for unconstrained non-submodular minimization. In Proceedings of the 37th International Conference on Machine Learning, Online, 13–18 July 2020; Daumé, H., III, Singh, A., Eds.; PMLR, Proceedings of Machine Learning Research. ACM: Vienna, Austria, 2020; Volume 119, pp. 3961–3972. [Google Scholar]
- Maehara, T.; Murota, K. A framework of discrete DC programming by discrete convex analysis. Math. Program. 2015, 152, 435–466. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D.; Wang, Y.; Zhang, D. Non-submodular maximization on massive data streams. J. Glob. Optim. 2019, 76, 729–743. [Google Scholar] [CrossRef]
- Wu, W.L.; Zhang, Z.; Du, D.Z. Set function optimization. J. Oper. Res. Soc. China 2019, 7, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Wang, Y.; Lu, Z.; Pardalos, P.M.; Xu, D.; Zhang, Z.; Du, D.Z. Solving the degree-concentrated fault-tolerant spanning subgraph problem by DC programming. Math. Program. 2018, 169, 255–275. [Google Scholar] [CrossRef]
- Wei, K.; Iyer, R.K.; Wang, S.; Bai, W.; Bilmes, J.A. Mixed robust/average submodular partitioning: Fast algorithms, guarantees, and applications. In Proceedings of the 29th Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 2233–2241. [Google Scholar]
- Jia, X.D.; Hou, B.; Liu, W. An approximation algorithm for the generalized prize-collecting steiner forest problem with submodular penalties. J. Oper. Res. Soc. China 2021. [Google Scholar] [CrossRef]
- Liu, X.; Li, W. Combinatorial approximation algorithms for the submodular multicut problem in trees with submodular penalties. J. Comb. Optim. 2020. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D.; Du, D.; Wu, C. Approximation algorithms for precedence-constrained identical machine scheduling with rejection. J. Comb. Optim. 2018, 35, 318–330. [Google Scholar] [CrossRef]
- Liu, X.; Xing, P.; Li, W. Approximation algorithms for the submodular load balancing with submodular penalties. Mathematics 2020, 8, 1785. [Google Scholar] [CrossRef]
- Liu, X.; Li, W. Approximation algorithms for the multiprocessor scheduling with submodular penalties. Optim. Lett. 2021, 15, 2165–2180. [Google Scholar] [CrossRef]
- Iyer, R.; Bilmes, J. Algorithms for approximate minimization of the difference between submodular functions, with applications. In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI’12), Catalina Island, CA, USA, 15–17 August 2012; AUAI Press: Arlington, VA, USA, 2012; pp. 407–417. [Google Scholar]
- Lehmann, B.; Lehmann, D.; Nisan, N. Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 2006, 55, 270–296. [Google Scholar] [CrossRef]
- Kuhnle, A.; Smith, J.D.; Crawford, V.G.; Thai, M.T. Fast maximization of non-submodular, monotonic functions on the integer lattice. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; PLMR: Stockholm, Sweden, 2018; Volume 6, pp. 4350–4368. [Google Scholar]
- Li, Y.; Du, D.; Xiu, N.; Xu, D. Improved Approximation Algorithms for the Facility Location Problems with Linear/Submodular Penalties. Algorithmica 2015, 73, 460–482. [Google Scholar] [CrossRef]
- Fleischer, L.; Iwata, S. A push-relabel framework for submodular function minimization and applications to parametric optimization. Discret. Appl. Math. 2003, 131, 311–322. [Google Scholar] [CrossRef] [Green Version]
Case | Setting | Our result |
---|---|---|
SMVS with general penalties | rejected set function is normalized and nondecreasing | lower bound is |
for any dimension i of any job and the diminishing-return ratio | (combinatorial algorithm) | |
rejected set function is submodular |
(noncombinatorial algorithm) (combinatorial algorithm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, W.; Zhu, Y. Single Machine Vector Scheduling with General Penalties. Mathematics 2021, 9, 1965. https://doi.org/10.3390/math9161965
Liu X, Li W, Zhu Y. Single Machine Vector Scheduling with General Penalties. Mathematics. 2021; 9(16):1965. https://doi.org/10.3390/math9161965
Chicago/Turabian StyleLiu, Xiaofei, Weidong Li, and Yaoyu Zhu. 2021. "Single Machine Vector Scheduling with General Penalties" Mathematics 9, no. 16: 1965. https://doi.org/10.3390/math9161965
APA StyleLiu, X., Li, W., & Zhu, Y. (2021). Single Machine Vector Scheduling with General Penalties. Mathematics, 9(16), 1965. https://doi.org/10.3390/math9161965