A Nonhomogeneous Boundary Value Problem for Steady State Navier-Stokes Equations in a Multiply-Connected Cusp Domain
Abstract
:1. Introduction
2. Notation and Auxiliary Results
2.1. Function Spaces
2.2. Formal Asymptotic Decomposition
3. Extension of Boundary Value
3.1. Flux Carrier from Inner Boundaries
3.2. Flux Carrier from the Outer Boundary
3.3. Extension of
3.4. Construction of Extension Coinciding with Asymptotic Decomposition near Cusp Point
4. Existence and Uniqueness of Weak Solution
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pileckas, K.; Raciene, A. On singular solutions of the stationary Navier–Stokes system in power cusp domains. Math. Model. Anal. 2021, 26, 982–1010. [Google Scholar]
- Albişoru, A.-F. On transmission-type problems for the generalized Darcy-Forchheimer-Brinkman and Stokes systems in complementary Lipschitz domains in R3. Filomat 2019, 33, 3361–3373. [Google Scholar] [CrossRef] [Green Version]
- Cardone, G.; Nazarov, S.A.; Sokolowski, J. Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary. Asymptot. Anal. 2009, 62, 41–88. [Google Scholar] [CrossRef]
- Kamotski, I.V.; Maz’ya, V.G. On the third boundary value problem in domains with cusps. J. Math. Sci. 2011, 173, 609–631. [Google Scholar] [CrossRef]
- Liu, Q. Regularity for the 3D MHD Equations via One Directional Derivative of the Pressure. Bull. Braz. Math. Soc. New Ser. 2020, 51, 157–167. [Google Scholar] [CrossRef]
- Maz’ya, V.G.; Plamenevskii, B.A. Estimates in Lp and Hölder classes and the Miranda–Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr. 1978, 81, 25. [Google Scholar]
- Maz’ya, V.G.; Nazarov, S.A.; Plamenevskij, B.A. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Birkhäuser-Verlag: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 2000; Volume 2. [Google Scholar]
- Movchan, A.B.; Nazarov, S.A. Asymptotics of the stressed-deformed state near a spatial peak-type inclusion. Mekh. Kompozit. Mater. 1985, 5, 792–800. [Google Scholar]
- Movchan, A.B.; Nazarov, S.A. The stressed-deformed state near a vertex of a three-dimensional absolutely rigid peak imbedded in an elastic body. Prikl. Mech. 1989, 25, 10–19. [Google Scholar]
- Nazarov, S.A. The structure of solutions of elliptic boundary value problems in thin domains. Vestn. Leningrad. Univ. Ser. Mat. Mekh. Astr. 1982, 7, 65–68. [Google Scholar]
- Nazarov, S.A. Asymptotic solution of the Navier–Stokes problem on the flow of a thin layer of fluid. Sib. Math. J. 1990, 31, 131–144. [Google Scholar] [CrossRef]
- Nazarov, S.A.; Pileckas, K. The Reynolds flow of a fluid in a thin three dimensional channel. Litov. Matem. Sb. 1990, 30, 772–783. [Google Scholar] [CrossRef]
- Nazarov, S.A.; Polyakova, O.R. Asymptotic behaviour of the stress–strain state near a spatial singularity of the boundary of the “beak ti” type. Prikl. Mat. Mekh. 1993, 57, 130. [Google Scholar]
- Nazarov, S.A. On the flow of water under a still stone. Math. Sb. 1995, 11, 75. [Google Scholar] [CrossRef]
- Nazarov, S.A.; Pileckas, K. Asymptotics of solutions to Stokes and Navier–Stokes equations in domains with paraboloidal outlets to infinity. Rend. Sem. Math. Univ. Padova 1998, 99, 1–43. [Google Scholar]
- Nazarov, S.A. On the essential spectrum of boundary value problems for systems of differential equations in a bounded domain with a peak. Funkt. Anal. I Prilozhen. 2009, 43, 55–67. [Google Scholar]
- Nazarov, S.A.; Sokolowski, J.; Taskinen, J. Neumann Laplacian on a domain with tangential components in the boundary. Ann. Acad. Sci. Fenn. Math. 2009, 34, 131–143. [Google Scholar]
- Ragusa, M.A.; Wu, F. Global regularity and stability of solutions to the 3D double-diffusive convection system with Navier boundary conditions. Adv. Differ. Equ. 2021, 26, 341–362. [Google Scholar]
- Kim, H.; Kozono, H. A removable isolated singularity theorem for the stationary Navier–Stokes equations. J. Diff. Equ. 2006, 220, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Pukhnachev, V.V. Singular solutions of Navier–Stokes equations. Advances in Mathematical Analysis of PDEs. AMS Transl. 2014, 232, 193–218. [Google Scholar]
- Russo, A.; Tartaglione, A. On the existence of singular solutions of the stationary Navier–Stokes problem. Lith. Math. J. 2013, 53, 423–437. [Google Scholar] [CrossRef]
- Korobkov, M.B.; Pileckas, K.; Pukhnachev, V.V.; Russo, R. The flux problem for the Navier–Stokes equations. Russ. Math. Surv. 2014, 69, 115–176. [Google Scholar] [CrossRef]
- Kaulakyte, K.; Kloviene, N.; Pileckas, K. Nonhomogeneous boundary value problem for the stationary Navier–Stokes equations in a domain with a cusp. Z. Angew. Math. Phys. 2019, 70, 36. [Google Scholar] [CrossRef]
- Kaulakyte, K.; Pileckas, K. Nonhomogeneous boundary value problem for the time periodic linearized Navier–Stokes system in a domain with outlet to infinity. J. Math. Anal. Appl. 2020, 489, 1241262020. [Google Scholar] [CrossRef]
- Kaulakyte, K.; Kloviene, N. On nonhomogeneous boundary value problem for the stationary Navier–Stokes equations in a symmetric cusp domain. Math. Model. Anal. 2021, 26, 55–71. [Google Scholar] [CrossRef]
- Kozlov, V.; Rossmann, J. On the nonstationary Stokes system in a cone. J. Diff. Equ. 2016, 260, 8277–8315. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, V.; Rossmann, J. On the nonstationary Stokes system in a cone: Asymptotics of solutions at infinity. J. Math. Anal. Appl. 2020, 486, 123821. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, V.; Rossmann, J. On the nonstationary Stokes system in a cone (Lp-theory). J. Math. Fluid Mech. 2020, 22, 42. [Google Scholar] [CrossRef]
- Eismontaite, A.; Pileckas, K. On singular solutions of time-periodic and steady Stokes problems in a power cusp domain. Appl. Anal. 2018, 97, 415–437. [Google Scholar] [CrossRef]
- Eismontaite, A.; Pileckas, K. On singular solutions of the initial boundary value problem for the Stokes system in a power cusp domain. Appl. Anal. 2019, 98, 2400–2422. [Google Scholar] [CrossRef]
- Pileckas, K.; Raciene, A. Non-stationary Navier–Stokes equation in 2D power cusp domain. I. Construction of the formal asymptotic decomposition. Adv. Nonlinear Anal. 2021, 10, 982–1010. [Google Scholar] [CrossRef]
- Pileckas, K.; Raciene, A. Non-stationary Navier-Stokes equation in 2D power cusp domain. II. Existence of the solution. Adv. Nonlinear Anal. 2021, 10, 1011–1038. [Google Scholar] [CrossRef]
- Korobkov, M.B.; Pileckas, K.; Russo, R. On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary conditions. Arch. Ration. Mech. Anal. 2013, 207, 185–213. [Google Scholar] [CrossRef] [Green Version]
- Korobkov, M.B.; Pileckas, K.; Russo, R. An existence theorem for steady Navier–Stokes equations in the axially symmetric case. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2015, 15, 233–262. [Google Scholar]
- Korobkov, M.B.; Pileckas, K.; Russo, R. Solution of Leray’s problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains. Ann. Math. 2015, 181, 769–807. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.A. Sobolev Spaces; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1975. [Google Scholar]
- Ladyzhenskaya, O.A. The Mathematical Theory of Viscous Incompressible Flow; Gordon and Breach: New York, NY, USA, 1969. [Google Scholar]
- Fujita, H. On stationary solutions to Navier-Stokes equation in symmetric plane domain under general outflow condition. Pitman research notes in mathematics. In Proceedings of the International Conference on Navier-Stokes Equations, Theory and Numerical Methods, Varenna, Italy, 2–6 June 1997; pp. 16–30. [Google Scholar]
- Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Solonnikov, V.A.; Pileckas, K. Certain spaces of solenoidal vectors and the solvability of the boundary problem for the Navier–Stokes system of equations in domains with noncompact boundaries. J. Math. Sci. 1986, 34, 2101–2111. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A.; Solonnikov, V.A. On some problems of vector analysis and generalized formulations of boundary value problems for the Navier–Stokes equations. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 1976, 59, 81–116. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaulakytė, K.; Pileckas, K. A Nonhomogeneous Boundary Value Problem for Steady State Navier-Stokes Equations in a Multiply-Connected Cusp Domain. Mathematics 2021, 9, 2022. https://doi.org/10.3390/math9172022
Kaulakytė K, Pileckas K. A Nonhomogeneous Boundary Value Problem for Steady State Navier-Stokes Equations in a Multiply-Connected Cusp Domain. Mathematics. 2021; 9(17):2022. https://doi.org/10.3390/math9172022
Chicago/Turabian StyleKaulakytė, Kristina, and Konstantinas Pileckas. 2021. "A Nonhomogeneous Boundary Value Problem for Steady State Navier-Stokes Equations in a Multiply-Connected Cusp Domain" Mathematics 9, no. 17: 2022. https://doi.org/10.3390/math9172022