On the Use of Copula for Quality Control Based on an AR(1) Model †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Copula Construction
2.1.1. Clayton Copula
2.1.2. Gumbel Copula
2.1.3. Farlie-Gumbel-Morgenstern (FGM) Copula
2.1.4. Frank Copula
2.1.5. Gaussian Copula
3. Comparison of Copulas to Approximate the Conditional Distribution
4. Applications in Quality Control
4.1. Construction of the Control Charts
4.2. EWMA Chart as a Special Case
4.3. Approximation Based on the Clayton Copula
4.4. Approximation Based on the Farlie-Gumbel-Morgenstern Copula
5. Numerical Results
5.1. Gaussian Copula
5.2. Clayton Copula
5.3. Farlie-Gumbel-Morgenstern Copula
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wold, H. A Study in the Analysis of Stationary Time Series, 2nd ed.; Almqvist and Wiksell Book Co.: Stockholm, Sweden, 1954. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Gardner, E.S. Exponential smoothing: The state of the art. J. Forecast. 1985, 4, 1–28. [Google Scholar] [CrossRef]
- Gardner, E.S.; McKenzie, E. Forecasting trends in time series. Manage. Sci. 1985, 31, 1237–1246. [Google Scholar] [CrossRef]
- Roberts, S.D. Properties of control chart zone tests. Bell Sys. Tech. J. 1959, 37, 83–114. [Google Scholar] [CrossRef]
- Crowder, S.V. A simple method for studying run length distribution of exponentially weighted moving average control. Technometrics 1959, 29, 401–407. [Google Scholar]
- Crowder, S.V. Design of exponentially weighted moving average schemes. Technometrics 1989, 21, 155–162. [Google Scholar] [CrossRef]
- Saccucci, M.S.; Lucas, J.M. Average run lengths for exponentially weighted moving average control schemes using the Markov Chain approach. J. Qual. Technol. 1990, 22, 154–162. [Google Scholar] [CrossRef]
- Alwan, L.C.; Roberts, H.V. Time-series modeling for statistical process control. J. Bus Econ. Stat. 1988, 6, 87–95. [Google Scholar]
- Montgomery, D.C.; Mastrangelo, C.M. Some statistical process control methods for autocorrelated data. J. Qual. Technol. 1991, 23, 179–193. [Google Scholar] [CrossRef]
- Schmid, W. On EWMA Charts for Time Series. In Frontiers in Statistical Quality Control; Lenz, H.J., Wilrich, P.T., Eds.; Physica-Verlag: Heidelberg, Germany, 1997; pp. 115–137. [Google Scholar]
- Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris. 1959, 8, 229–231. [Google Scholar]
- Nelsen, R. An Introduction to Copulas, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Genest, C.; MacKay, J. Copules archim’ediennes et familles de lois bidimensionnelles dont les marges sont donn´ees. Canad. J. Statist. 1986, 14, 145. [Google Scholar] [CrossRef]
- Genest, C.; MacKay, J. The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 1986, 40, 280–285. [Google Scholar]
- Torre, E.; Marelli, S.; Embrechts, P.; Sudret, B. A general framework for data-driven uncertainty quantification under complex dependencies using Vine Copulas. Probab. Eng. Mech. 2018, 55, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.S.; Li, D.; Zhou, Q.; Phoon, K.K.; Zhang, L.M. Impact of Copulas for modeling bivariate distributions on system reliability. Struct. Saf. 2013, 44, 80–90. [Google Scholar] [CrossRef]
- Zhang, M.; Bedford, T. Vine copula approximation: A generic method for coping with conditional dependence. Stat. Comput. 2018, 28, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198. [Google Scholar] [CrossRef] [Green Version]
- Kurowicka, D. Dependence Modeling: Vine Copula Handbook; World Scientific: Singapore, 2011. [Google Scholar]
- So, M.K.; Yeung, C.Y. Vine-copula garch model with dynamic conditional dependence. Comput. Stat. Data Anal. 2014, 76, 655–671. [Google Scholar] [CrossRef]
- Hryniewicz, O. On the Robustness of the Shewhart Control Chart to Different Types of Dependencies in Data. In Frontiers in Statistical Quality Control; Lenz, H.J., Schmid, W., Wilrich, P.T., Eds.; Physica: Heidelberg, Germany, 2012; Volume 10. [Google Scholar]
- Liao, Y.; Deschamps, F.; De Freitas Rocha Loures, E.; Pierin Ramos, L.F. Past, present and future of Industry 4.0—A systematic literature review and research agenda proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. [Google Scholar]
- Reynolds, M.R.; Arnold, J.C.; Baik, J.W. Variable sampling interval X charts in the presence of correlation. J. Qual. Technol. 1996, 28, 12–30. [Google Scholar] [CrossRef]
- Gilbert, K.C.; Kirby, K.; Hild, C.R. Charting autocorrelated data: Guidelines for practitioners. Qual. Eng. 1997, 9, 367–382. [Google Scholar] [CrossRef]
- Lu, C.W.; Reynolds, M.R. EWMA control charts for monitoring the mean of autocorrelated processes. J. Qual. Technol. 1999, 31, 166–188. [Google Scholar] [CrossRef]
- Lin, Y.-C. The variable parameters control charts for monitoring autocorrelated processes. Comm. Stat-Simul C 2009, 38, 729–749. [Google Scholar] [CrossRef]
- Xi, M.; Zhang, L.; Hu, J.; Palazoglu, A. A model-free approach to reduce the effect of autocorrelation on statistical process control charts. J. Chemom. 2018, 32, 12. [Google Scholar]
- Zhang, N.F. A statistical control chart for stationary process data. Technometrics 1998, 40, 24–38. [Google Scholar] [CrossRef]
- Woodall, W.H.; Faltin, F. Autocorrelated data and SPC. ASQC Stat. Div. Newsl. 1993, 13, 1821. [Google Scholar]
- Al-babtain, A.; Elbatal, I.; Yousof, H.M. A new flexible three-parameter model: Properties, Clayton Copula, and modeling real data. Symmetry 2020, 12, 440. [Google Scholar] [CrossRef] [Green Version]
- Simiu, E.; Heckert, N.A.; Filliben, J.J.; Johnson, S.K. Extreme wind load estimates based on the Gumbel distribution of dynamic pressures: An assessment. Struct. Saf. 2001, 23, 221–229. [Google Scholar] [CrossRef]
- Cossin, D.; Schellhorn, H.; Song, N.; Satjaporn, T. A theoretical argument why the t-Copula explains credit risk contagion better than the Gaussian Copula. Adv. Decs. Sci. 2010, 29, 546547. [Google Scholar] [CrossRef]
- McCool, J.I. Testing for dependency of failure times in life testing. Technometrics 2012, 48, 41–48. [Google Scholar] [CrossRef]
- Shewhart, W.A. Economic Control of Quality of Manufactured Product; D. Van Nostrand Company: New York, NY, USA, 1931. [Google Scholar]
- Deming, W.E. Out of the Crisis; Massachusetts Institute of Technology, Center for Advanced Engineering Study: Cambridge, MA, USA, 1986. [Google Scholar]
- Juran, J.M. Quality-Control Handbook; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
- Feigenbaum, A.V. Total Quality Control; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
Clayton | FGM | Frank | Gumbel | Actual |
0.521 | 0.502 | 0.857 | 0.00114 | 0.500 |
0.516 | 0.506 | 0.855 | 0.00112 | 0.559 |
0.455 | 0.423 | 0.831 | 0.00083 | 0.483 |
0.449 | 0.417 | 0.829 | 0.00029 | 0.563 |
0.507 | 0.488 | 0.854 | 0 | 0.635 |
Clayton | FGM | Frank | Gumbel | Actual |
0.975 | 0.934 | 0.821 | 0.992 | 0.993 |
1.0 | 0.943 | 0.859 | 0.999 | 1.0 |
0.922 | 0.921 | 0.786 | 0.978 | 0.978 |
1.0 | 0.939 | 0.796 | 0.997 | 1.0 |
0.958 | 0.915 | 0.807 | 0.986 | 0.989 |
Clayton | FGM | Frank | Gumbel | Actual |
0.988 | 0.936 | 0.957 | 0.998 | 0.997 |
0.989 | 0.940 | 0.963 | 0.998 | 0.998 |
0.989 | 0.941 | 0.965 | 0.998 | 0.998 |
1.0 | 0.931 | 0.952 | 1.0 | 1.0 |
0.990 | 0.954 | 0.973 | 0.998 | 0.998 |
ρ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
σ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
0.1 | 326.5 | 313.7 | 270.1 | 210.2 | 143.0 | 91.5 | 50.9 | 28.0 | 13.1 | 5.04 |
0.2 | 323.6 | 325.5 | 232.9 | 196.7 | 132.6 | 90.2 | 50.3 | 28.1 | 13.3 | 5.08 |
0.3 | 326.7 | 305.9 | 228.1 | 186.8 | 124.8 | 87.1 | 50.2 | 28.6 | 12.9 | 5.06 |
0.4 | 270.4 | 300.3 | 217.1 | 182.5 | 123.9 | 91.9 | 50.5 | 28.2 | 13.1 | 5.06 |
0.5 | 344.7 | 292.6 | 242.7 | 185.9 | 126.2 | 92.1 | 48.6 | 28.2 | 13.1 | 5.09 |
0.6 | 280.0 | 278.4 | 278.3 | 180.2 | 101.4 | 78.5 | 50.7 | 28.4 | 13.1 | 5.14 |
0.7 | 324.3 | 281.3 | 247.0 | 173.0 | 122.7 | 87.9 | 48.1 | 29.1 | 13.1 | 5.06 |
0.8 | 329.1 | 274.7 | 241.2 | 174.3 | 125.7 | 82.1 | 48.5 | 29.0 | 12.8 | 5.11 |
0.9 | 350.9 | 272.2 | 259.6 | 158.4 | 104.8 | 78.7 | 48.9 | 28.3 | 12.9 | 5.10 |
1.0 | 379.2 | 273.4 | 249.0 | 154.3 | 104.8 | 70.8 | 51.4 | 28.4 | 13.2 | 5.08 |
ρ | ||||||||
---|---|---|---|---|---|---|---|---|
σ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
0.1 | 347.8 | 300.9 | 219.1 | 120.0 | 56.0 | 25.5 | 11.5 | 5.74 |
0.2 | 322.6 | 342.9 | 219.9 | 119.3 | 59.8 | 25.5 | 11.3 | 5.46 |
0.3 | 295 | 295.3 | 227.1 | 119.5 | 56.6 | 25.2 | 11.4 | 5.49 |
0.4 | 317.3 | 309.1 | 181.5 | 112.0 | 52.9 | 25.4 | 11.5 | 5.45 |
0.5 | 302.1 | 309.7 | 219.3 | 113.8 | 57.4 | 25.2 | 11.2 | 5.45 |
0.6 | 311 | 302.6 | 237.3 | 119.7 | 59.1 | 25.6 | 11.8 | 5.53 |
0.7 | 324.3 | 281.3 | 247.0 | 113.0 | 59.9 | 27.1 | 11.8 | 5.28 |
0.8 | 329.1 | 274.7 | 241.2 | 106.4 | 56.2 | 26.5 | 11.2 | 5.41 |
0.9 | 350.9 | 272.2 | 259.6 | 112.4 | 54.7 | 29.0 | 11.3 | 5.60 |
1.0 | 322.3 | 273.4 | 249.0 | 109.9 | 52.6 | 27.4 | 11.2 | 5.40 |
ρ | ||||
---|---|---|---|---|
σ | 0 | 0.1 | 0.2 | 0.3 |
0.1 | 329.6 | 474.4 | 440.4 | 575.2 |
0.2 | 341.4 | 431.0 | 559.8 | 483.3 |
0.3 | 312.1 | 390.6 | 442.0 | 610.0 |
0.4 | 334.3 | 456.2 | 323.1 | 585.7 |
0.5 | 344.8 | 443.8 | 550.2 | 580.0 |
0.6 | 323.1 | 459.0 | 559.8 | 606.4 |
0.7 | 338.8 | 391.3 | 511.7 | 374.9 |
0.8 | 333.2 | 432.5 | 558.5 | 436.4 |
0.9 | 317.5 | 450.3 | 454.3 | 375.7 |
1.0 | 337.9 | 439.7 | 475.1 | 411.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, T.M.; Nanthakumar, A.; Nanthakumar, H. On the Use of Copula for Quality Control Based on an AR(1) Model. Mathematics 2021, 9, 2211. https://doi.org/10.3390/math9182211
Young TM, Nanthakumar A, Nanthakumar H. On the Use of Copula for Quality Control Based on an AR(1) Model. Mathematics. 2021; 9(18):2211. https://doi.org/10.3390/math9182211
Chicago/Turabian StyleYoung, Timothy M., Ampalavanar Nanthakumar, and Hari Nanthakumar. 2021. "On the Use of Copula for Quality Control Based on an AR(1) Model" Mathematics 9, no. 18: 2211. https://doi.org/10.3390/math9182211