A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System
Abstract
:1. Introduction
- Fast convergence method: An innovative method to calculate the GMPP of the PV system through the hybrid ABC-P&O algorithm, which ensures fast convergence with minimum steady-state oscillations. The soft-computing reported techniques have high computational costs or many iterations where different references are probed during the optimization process. Both cases cause longer convergence times and also produce oscillations in the main converter’s variables, as is described in Table 1.
- MPPT algorithm decoupling dynamics from the control loops: Many of the MPPT techniques listed in Table 1 directly regulate the duty cycle, which produces oscillations during every update of the duty cycle in the converter’s voltage and current waveforms. Therefore, an appropriate stabilization time is required before using the algorithm again. This problem can be fixed by decoupling the dynamics of the MPPT and the control of the converter by employing a fast current loop, as in the presented ABC-P&O algorithm. This way, the MPPT reference output corresponds to a voltage instead of a duty cycle, avoiding the steady-state oscillations.
- Fast control loops: Two nested control loops together with a current controller (inner loop) and a voltage controller (outer loop), in combination with the ABC-P&O MPPT algorithm, permit one to regulate the output voltage of a PV system under challenging environmental circumstances. All the presented controllers guarantee fast-tracking of the control set-points, and low steady-state error under challenging tests, including system start-up, dynamic partial shading changes, and irradiance variations. The implementation of these loops allows the system’s independent and fast dynamic response.
- Experimental validation in a low-cost controller: The presented MPPT algorithm and the double loop controller of the dc–dc boost converter were implemented in a commercial low-cost digital signal controller (DSC). This way, the MPPT algorithm was tested in realistic operation conditions, unlike many of the proposed techniques presented in the literature that just have been verified in simulations or experimentally with expensive control platforms, as shown in Table 1.
- A complete experimental validation: The MPPT method was tested by simulation and hardware-in-the-loop (HIL) to prove its viability and superior robustness to obtain the GMPP of the PV system in challenge tests, which included different dynamic partial shading changes, irradiance variations, and start-up tests. It also included comparing the proposed method with a conventional P&O method, with a voltage scan across the entire voltage range for the PV system to ensure always the GMPPT [70].
2. PV System Description
2.1. Discrete-Time Sliding-Mode Current Control
2.2. Discrete-Time PI Voltage Control
3. ABC-P&O Algorithm
Algorithm 1: ABC-P&O MPPT algorithm running at the microcontroller (see Figure 3). |
4. Results
4.1. Inner Loop Current Control Results
4.2. Double Loop Results
4.3. GMPPT P&O and Proposed ABC-P&O Method Comparison
4.3.1. Scenario 1: System Start-Up
4.3.2. Scenario 2: Uniform Irradiance Variations
4.3.3. Scenario 3: Sharp Change of the PSC
4.3.4. Scenario 4: Multiple Peaks in the P–V Characteristic
4.3.5. Scenario 5: Dark Cloud Passing
4.3.6. Scenario 6: Light Cloud Passing
4.3.7. Scenario 7: Gradual Changes in Irradiance and Shading Pattern
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Artificial bee colony algorithm. |
ACO | Ant colony optimization. |
AS | Analytical solution method. |
BST | Bisection search theorem method. |
CC | Constant current method. |
CF | Curve fitting method. |
CS | Current sweep method. |
CV | Constant voltage method. |
DC-L CDC | DC-link capacitor droop control method. |
DE | Differential evaluation. |
DSC | Digital signal controller. |
ELPSO | Enhanced leader PSO. |
FBC | Feedback ( or ) control. |
FSC | Fractional short-circuit method. |
FLC | Fuzzy logic controller. |
GA | Genetic algorithm. |
GMPP | Global maximum power point. |
GWO | Grey wolf optimization. |
HIL | Hardware-in-the-loop. |
HC | Hill climbing method. |
INC | Incremental conductance algorithm. |
IL | Iterative learning. |
LCC | Linear current control method. |
LMPP | Local maximum power point. |
LV&CMM | Load voltage and load current maximization method. |
LT | Lookup table method. |
MPP | Maximum power point. |
MPPT | Maximum power point tracking. |
OCC | One cycle control method. |
PC | Pilot cell method. |
PSC | Partial shading condition. |
PSO | Particle swarm optimization. |
P&O | Perturb and observe algorithm. |
PV | Photovoltaic. |
PVOS | PV Output senseless method. |
RCC | Ripple correlation controller method. |
SC | Slide control method. |
SO | System oscillation method. |
SS | State space control method. |
SD | Steepest descent method. |
TBM | Temperature based method. |
TWC | Three-point weight comparison method. |
VSSIR | Variable step size incremental resistance. |
VL | Variable inductance method. |
References
- Bollipo, R.B.; Mikkili, S.; Bonthagorla, P.K. Hybrid, optimal, intelligent and classical PV MPPT techniques: A review. CSEE J. Power Energy Syst. 2021, 7, 9–33. [Google Scholar] [CrossRef]
- Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 2005, 20, 963–973. [Google Scholar] [CrossRef]
- Ahmed, J.; Salam, Z. An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Appl. Energy 2015, 150, 97–108. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Framework of Maximum Power Extraction From Solar PV Panel Using Self Predictive Perturb and Observe Algorithm. IEEE Trans. Sustain. Energy 2018, 9, 895–903. [Google Scholar] [CrossRef]
- Zakzouk, N.E.; Elsaharty, M.A.; Abdelsalam, A.K.; Helal, A.A.; Williams, B.W. Improved performance low-cost incremental conductance PV MPPT technique. IET Renew. Power Gener. 2016, 10, 561–574. [Google Scholar] [CrossRef] [Green Version]
- Huynh, D.C.; Dunnigan, M.W. Development and Comparison of an Improved Incremental Conductance Algorithm for Tracking the MPP of a Solar PV Panel. IEEE Trans. Sustain. Energy 2016, 7, 1421–1429. [Google Scholar] [CrossRef]
- Elgendy, M.A.; Atkinson, D.J.; Zahawi, B. Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates. IET Renew. Power Gener. 2016, 10, 133–139. [Google Scholar] [CrossRef]
- Tan, C.Y.; Abd Rahim, N.; Selvaraj, J. Employing dual scaling mode for adaptive hill climbing method on buck converter. IET Renew. Power Gener. 2015, 9, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Ons, Z.; Aymen, J.; Craciunescu, A.; Popescu, M. Comparison of Hill-Climbing and Artificial Neural Network Maximum Power Point Tracking Techniques for Photovoltaic Modules. In Proceedings of the 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Sliema, Malta, 17 August 2015; pp. 19–23. [Google Scholar] [CrossRef]
- Jain, S.; Agarwal, V. A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems. IEEE Power Electron. Lett. 2004, 2, 16–19. [Google Scholar] [CrossRef]
- Pradeep, K.P.J.; Chandra Mouli, C.; Sai Prasad Reddy, K.; Nagabhushan Raju, K. Design and Implementation of Maximum Power Point Tracking in Photovoltaic Systems. Int. J. Eng. Sci. Invent. 2015, 4, 37–43. [Google Scholar]
- Tsang, K.; Chan, W. Maximum power point tracking for PV systems under partial shading conditions using current sweeping. Energy Convers. Manag. 2015, 93, 249–258. [Google Scholar] [CrossRef]
- Sreeraj, E.; Chatterjee, K.; Bandyopadhyay, S. One-Cycle-Controlled Single-Stage Single-Phase Voltage-Sensorless Grid-Connected PV System. IEEE Trans. Ind. Electron. 2013, 60, 1216–1224. [Google Scholar] [CrossRef]
- Fortunato, M.; Giustiniani, A.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Maximum Power Point Tracking in a One-Cycle-Controlled Single-Stage Photovoltaic Inverter. IEEE Trans. Ind. Electron. 2008, 55, 2684–2693. [Google Scholar] [CrossRef]
- Galtieri, J.; Krein, P.T. Ripple Correlation Control with Capacitive Compensation for Photovoltaic Applications. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 25–28 June 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Boonmee, C.; Kumsuwan, Y. Modified maximum power point tracking based-on ripple correlation control application for single-phase VSI grid-connected PV systems. In Proceedings of the 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 15–17 May 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Yilmaz, U.; Kircay, A.; Borekci, S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew. Sustain. Energy Rev. 2018, 81, 994–1001. [Google Scholar] [CrossRef]
- Obaid, Z.A.; Cipcigan, L.M.; Muhssin, M.T. Power system oscillations and control: Classifications and PSSs’ design methods: A review. Renew. Sustain. Energy Rev. 2017, 79, 839–849. [Google Scholar] [CrossRef]
- Levron, Y.; Shmilovitz, D. Maximum Power Point Tracking Employing Sliding Mode Control. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 724–732. [Google Scholar] [CrossRef]
- Zhang, F.; Maddy, J.; Premier, G.; Guwy, A. Novel current sensing photovoltaic maximum power point tracking based on sliding mode control strategy. Sol. Energy 2015, 118, 80–86. [Google Scholar] [CrossRef]
- Jamil, M.; Saeed, H.; Qaisar, S.; Felemban, E.A. Maximum power point tracking of a solar system using state space averaging for wireless sensor network. In Proceedings of the 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia, 25–27 November 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Raedani, R.; Hanif, M. Design, testing and comparison of P O, IC and VSSIR MPPT techniques. In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 322–330. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Shoyama, M. Stability study of variable step size incremental conductance/impedance MPPT for PV systems. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Korea, 30 May–3 June 2011; pp. 386–392. [Google Scholar] [CrossRef]
- Mumtaz, S.; Ahmad, S.; Khan, L.; Ali, S.; Kamal, T.; Hassan, S.Z. Adaptive Feedback Linearization Based NeuroFuzzy Maximum Power Point Tracking for a Photovoltaic System. Energies 2018, 11, 606. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hurley, W.G.; Wölfle, W.H. A New Approach to Achieve Maximum Power Point Tracking for PV System With a Variable Inductor. IEEE Trans. Power Electron. 2011, 26, 1031–1037. [Google Scholar] [CrossRef]
- Khatib, T.; Elmenreich, W.; Mohamed, A. Simplified I-V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter. Sustainability 2017, 9, 657. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Salam, M.; El-Mohandes, M.T.; Goda, M. An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels. Sol. Energy 2018, 171, 547–561. [Google Scholar] [CrossRef]
- Hsiao, Y.T.; Chen, C.H. Maximum power tracking for photovoltaic power system. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 13–18 October 2002; Volume 2, pp. 1035–1040. [Google Scholar] [CrossRef]
- Li, G.; Jin, Y.; Akram, M.; Chen, X.; Ji, J. Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions–A review. Renew. Sustain. Energy Rev. 2018, 81, 840–873. [Google Scholar] [CrossRef]
- Batarseh, M.G.; Za’ter, M.E. Hybrid maximum power point tracking techniques: A comparative survey, suggested classification and uninvestigated combinations. Sol. Energy 2018, 169, 535–555. [Google Scholar] [CrossRef]
- Xiao, W.; Dunford, W.G.; Palmer, P.R.; Capel, A. Application of Centered Differentiation and Steepest Descent to Maximum Power Point Tracking. IEEE Trans. Ind. Electron. 2007, 54, 2539–2549. [Google Scholar] [CrossRef]
- Pradhan, R.; Subudhi, B. A steepest-descent based maximum power point tracking technique for a photovoltaic power system. In Proceedings of the 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India, 17–19 December 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Rodriguez, C.; Amaratunga, G.A.J. Analytic Solution to the Photovoltaic Maximum Power Point Problem. IEEE Trans. Circuits Syst. I: Regul. Pap. 2007, 54, 2054–2060. [Google Scholar] [CrossRef]
- Kuperman, A. Comments on “An Analytical Solution for Tracking Photovoltaic Module MPP”. IEEE J. Photovoltaics 2014, 4, 734–735. [Google Scholar] [CrossRef]
- Farivar, G.; Asaei, B.; Mehrnami, S. An Analytical Solution for Tracking Photovoltaic Module MPP. IEEE J. Photovoltaics 2013, 3, 1053–1061. [Google Scholar] [CrossRef]
- Coelho, R.F.; Concer, F.M.; Martins, D.C. A MPPT approach based on temperature measurements applied in PV systems. In Proceedings of the 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET), Kandy, Sri Lanka, 6–9 December 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Correa-Betanzo, C.; Calleja, H.; De León-Aldaco, S. Module temperature models assessment of photovoltaic seasonal energy yield. Sustain. Energy Technol. Assessments 2018, 27, 9–16. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, H.; Shen, W.; Choo, F.H.; Loh, P.C.; Tan, K.K. A novel approach of maximizing energy harvesting in photovoltaic systems based on bisection search theorem. In Proceedings of the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010; pp. 2143–2148. [Google Scholar] [CrossRef]
- Chun, S.; Kwasinski, A. Analysis of Classical Root-Finding Methods Applied to Digital Maximum Power Point Tracking for Sustainable Photovoltaic Energy Generation. IEEE Trans. Power Electron. 2011, 26, 3730–3743. [Google Scholar] [CrossRef]
- Qing, X.; Sun, H.; Feng, X.; Chung, C.Y. Submodule-Based Modeling and Simulation of a Series-Parallel Photovoltaic Array Under Mismatch Conditions. IEEE J. Photovoltaics 2017, 7, 1731–1739. [Google Scholar] [CrossRef]
- Tauseef, M.; Nowicki, E. A simple and cost effective maximum power point tracker for PV arrays employing a novel constant voltage technique. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Leedy, A.W.; Guo, L.; Aganah, K.A. A constant voltage MPPT method for a solar powered boost converter with DC motor load. In Proceedings of the 2012 Proceedings of IEEE Southeastcon, Orlando, FL, USA, 15–18 March 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, Y.P.; Hsu, S.Y. A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm. Comput. Electr. Eng. 2016, 51, 331–342. [Google Scholar] [CrossRef]
- Di, X.; Yundong, M.; Qianhong, C. A global maximum power point tracking method based on interval short-circuit current. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Leedy, A.W.; Garcia, K.E. Approximation of P-V characteristic curves for use in maximum power point tracking algorithms. In Proceedings of the 45th Southeastern Symposium on System Theory, Waco, TX, USA, 11 March 2013; pp. 88–93. [Google Scholar] [CrossRef]
- Salas, V.; Olías, E.; Barrado, A.; Lázaro, A. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol. Energy Mater. Sol. Cells 2006, 90, 1555–1578. [Google Scholar] [CrossRef]
- Hassouni, B.E.; Ourahou, M.; Ayrir, W.; Haddi, A.; Amrani, A. A Study of Efficient MPPT Techniques for Photovoltaic System Using Boost Converter. Int. J. Emerg. Electr. Power Syst. 2018, 19, 20170180. [Google Scholar] [CrossRef]
- Desai, H.P.; Patel, H.K. Maximum Power Point Algorithm in PV Generation: An Overview. In Proceedings of the 2007 7th International Conference on Power Electronics and Drive Systems, Bangkok, Thailand, 11 April 2007; pp. 624–630. [Google Scholar] [CrossRef]
- Shmilovitz, D. On the control of photovoltaic maximum power point tracker via output parameters. IEE Proc.-Electr. Power Appl. 2005, 152, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Shabaan, S.; Abu El-Sebah, M.I.; Bekhit, P. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system. J. Electr. Syst. Inf. Technol. 2018, 5, 11–22. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, H.Y.; Kim, G.H.; Seo, H.R.; Ali, M.H.; Park, M.; Yu, I.K. The experimental analysis of the grid- connected PV system applied by POS MPPT. In Proceedings of the 2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, Korea, 8–11 October 2007; pp. 1786–1791. [Google Scholar]
- Sundareswaran, K.; Vigneshkumar, V.; Palani, S. Development of a hybrid genetic algorithm/perturb and observe algorithm for maximum power point tracking in photovoltaic systems under non-uniform insolation. IET Renew. Power Gener. 2015, 9, 757–765. [Google Scholar] [CrossRef]
- Manickam, C.; Raman, G.R.; Raman, G.P.; Ganesan, S.I.; Nagamani, C. A Hybrid Algorithm for Tracking of GMPP Based on P&O and PSO With Reduced Power Oscillation in String Inverters. IEEE Trans. Ind. Electron. 2016, 63, 6097–6106. [Google Scholar] [CrossRef]
- Lian, K.L.; Jhang, J.H.; Tian, I.S. A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined With Particle Swarm Optimization. IEEE J. Photovoltaics 2014, 4, 626–633. [Google Scholar] [CrossRef]
- Abdulkadir, M.; Yatim, A.H.M. Hybrid maximum power point tracking technique based on PSO and incremental conductance. In Proceedings of the 2014 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 13–14 October 2014; pp. 271–276. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Farh, H.M. Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Sol. Energy 2019, 177, 306–316. [Google Scholar] [CrossRef]
- Pilakkat, D.; Kanthalakshmi, S. An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Sol. Energy 2019, 178, 37–47. [Google Scholar] [CrossRef]
- Alajmi, B.N.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System. IEEE Trans. Power Electron. 2011, 26, 1022–1030. [Google Scholar] [CrossRef]
- Sher, H.A.; Murtaza, A.F.; Noman, A.; Addoweesh, K.E.; Al-Haddad, K.; Chiaberge, M. A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P O MPPT. IEEE Trans. Sustain. Energy 2015, 6, 1426–1434. [Google Scholar] [CrossRef] [Green Version]
- Ram, J.P.; Pillai, D.S.; Rajasekar, N.; Strachan, S.M. Detection and Identification of Global Maximum Power Point Operation in Solar PV Applications Using a Hybrid ELPSO-P O Tracking Technique. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1361–1374. [Google Scholar] [CrossRef] [Green Version]
- Joisher, M.; Singh, D.; Taheri, S.; Espinoza-Trejo, D.R.; Pouresmaeil, E.; Taheri, H. A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions. IEEE Access 2020, 8, 38481–38492. [Google Scholar] [CrossRef]
- Mohanty, S.; Subudhi, B.; Ray, P.K. A Grey Wolf-Assisted Perturb Observe MPPT Algorithm for a PV System. IEEE Trans. Energy Convers. 2017, 32, 340–347. [Google Scholar] [CrossRef]
- Ali, A.; Almutairi, K.; Padmanaban, S.; Tirth, V.; Algarni, S.; Irshad, K.; Islam, S.; Zahir, M.H.; Shafiullah, M.; Malik, M.Z. Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition–A Retrospection. IEEE Access 2020, 8, 127368–127392. [Google Scholar] [CrossRef]
- Yap, K.Y.; Sarimuthu, C.R.; Lim, J.M.Y. Artificial Intelligence Based MPPT Techniques for Solar Power System: A review. J. Mod. Power Syst. Clean Energy 2020, 8, 1043–1059. [Google Scholar] [CrossRef]
- Li, X.; Wen, H.; Hu, Y.; Du, Y.; Yang, Y. A Comparative Study on Photovoltaic MPPT Algorithms Under EN50530 Dynamic Test Procedure. IEEE Trans. Power Electron. 2021, 36, 4153–4168. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Wen, H.; Xiao, W. Comprehensive Studies on Operational Principles for Maximum Power Point Tracking in Photovoltaic Systems. IEEE Access 2019, 7, 121407–121420. [Google Scholar] [CrossRef]
- Díaz Martínez, D.; Trujillo Codorniu, R.; Giral, R.; Vázquez Seisdedos, L. Evaluation of particle swarm optimization techniques applied to maximum power point tracking in photovoltaic systems. Int. J. Circuit Theory Appl. 2021, 49, 1849–1867. [Google Scholar] [CrossRef]
- Hanzaei, S.H.; Gorji, S.A.; Ektesabi, M. A Scheme-Based Review of MPPT Techniques With Respect to Input Variables Including Solar Irradiance and PV Arrays’ Temperature. IEEE Access 2020, 8, 182229–182239. [Google Scholar] [CrossRef]
- Liu, F.; Kang, Y.; Zhang, Y.; Duan, S. Comparison of P O and hill climbing MPPT methods for grid-connected PV converter. In Proceedings of the 2008 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 3–5 June 2008; pp. 804–807. [Google Scholar] [CrossRef]
- Ghasemi, M.A.; Foroushani, H.M.; Parniani, M. Partial Shading Detection and Smooth Maximum Power Point Tracking of PV Arrays Under PSC. IEEE Trans. Power Electron. 2016, 31, 6281–6292. [Google Scholar] [CrossRef] [Green Version]
- El Aroudi, A.; Martínez-Treviño, B.A.; Vidal-Idiarte, E.; Cid-Pastor, A. Fixed switching frequency digital sliding-mode control of DC-DC power supplies loaded by constant power loads with inrush current limitation capability. Energies 2019, 12, 1055. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Idiarte, E.; Marcos-Pastor, A.; Garcia, G.; Cid-Pastor, A.; Martinez-Salamero, L. Discrete-time sliding-mode-based digital pulse width modulation control of a boost converter. IET Power Electron. 2015, 8, 708–714. [Google Scholar] [CrossRef]
- Vidal-Idiarte, E.; Marcos-Pastor, A.; Giral, R.; Calvente, J.; Martinez-Salamero, L. Direct digital design of a sliding mode-based control of a PWM synchronous buck converter. IET Power Electron. 2017, 10, 1714–1720. [Google Scholar] [CrossRef]
- Restrepo, C.; González-Castaño, C.; Muñoz, J.; Chub, A.; Vidal-Idiarte, E.; Giral, R. An MPPT algorithm for PV systems based on a simplified photo-diode model. IEEE Access 2021, 9, 33189–33320. [Google Scholar] [CrossRef]
- Kamran, M.; Mudassar, M.; Fazal, M.R.; Asghar, M.U.; Bilal, M.; Asghar, R. Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system. J. King Saud-Univ.-Eng. Sci. 2018, 32, 432–441. [Google Scholar]
- Tereshko, V. Reaction-diffusion model of a honeybee colony’s foraging behaviour. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2000; pp. 807–816. [Google Scholar]
- Tereshko, V.; Loengarov, A. Collective decision making in honey-bee foraging dynamics. Comput. Inf. Syst. 2005, 9, 1. [Google Scholar]
- González-Castaño, C.; Restrepo, C.; Kouro, S.; Rodriguez, J. MPPT Algorithm Based on Artificial Bee Colony for PV System. IEEE Access 2021, 9, 43121–43133. [Google Scholar] [CrossRef]
- Nozohour-leilabady, B.; Fazelabdolabadi, B. On the application of artificial bee colony (ABC) algorithm for optimization of well placements in fractured reservoirs; efficiency comparison with the particle swarm optimization (PSO) methodology. Petroleum 2016, 2, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Soufyane Benyoucef, A.; Chouder, A.; Kara, K.; Silvestre, S. Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl. Soft Comput. 2015, 32, 38–48. [Google Scholar] [CrossRef] [Green Version]
MPPT Algorithm | Ref. | MPPT Reference Output | Converter (Switching Frequency) | Shading Patterns | Exp. Results | Low Controller Cost | Shading Pattern Changes | Irradiance Variations | Start-Up Test | Fast Tracking Speed without Oscillations |
---|---|---|---|---|---|---|---|---|---|---|
P&O-GA | [52] | Duty cycle | Boost (20 kHz) | 8 | ||||||
P&O-PSO | [53] | Duty cycle | Boost (20 kHz) | 9 | ||||||
INC-PSO | [55] | Voltage | Without converter | 1 | ||||||
GWO-FLC | [56] | Duty cycle | Boost ( ) | 3 | ||||||
P&O-PSO | [54] | Voltage | Interleaved Boost (20 kHz) | 3 | ||||||
P&O-ABC | [57] | Duty cycle | Boost ( ) | 3 | ||||||
HC-FLC | [58] | Duty cycle | Boost (4 kHz) | 1 | ||||||
P&O-FSC | [59] | Duty cycle | Buck-boost (35 kHz) | 2 | ||||||
P&O-ELPSO | [60] | Duty cycle | Boost (10 kHz) | 4 | ||||||
PSO-DE | [61] | Duty cycle | Boost (20 kHz) | 3 | ||||||
GWO-P&O | [62] | Duty cycle | Boost (10 kHz) | 5 | ||||||
This work | [-] | Voltage | Boost (25 kHz) | 133 |
Electrical Parameters | Value | |
---|---|---|
Maximum power | 200.143 W | |
Voltage at maximum power | 26.3 V | |
Current at maximum power | 7.61 A | |
Short-circuit current | 8.21 A | |
Open-circuit voltage | 32.9 V | |
Temperature coefficient of short-circuit current | A/C | |
Temperature coefficient | V/C |
Converter | ||||
---|---|---|---|---|
Boost |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restrepo, C.; Yanẽz-Monsalvez, N.; González-Castaño, C.; Kouro, S.; Rodriguez, J. A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System. Mathematics 2021, 9, 2228. https://doi.org/10.3390/math9182228
Restrepo C, Yanẽz-Monsalvez N, González-Castaño C, Kouro S, Rodriguez J. A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System. Mathematics. 2021; 9(18):2228. https://doi.org/10.3390/math9182228
Chicago/Turabian StyleRestrepo, Carlos, Nicolas Yanẽz-Monsalvez, Catalina González-Castaño, Samir Kouro, and Jose Rodriguez. 2021. "A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System" Mathematics 9, no. 18: 2228. https://doi.org/10.3390/math9182228
APA StyleRestrepo, C., Yanẽz-Monsalvez, N., González-Castaño, C., Kouro, S., & Rodriguez, J. (2021). A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System. Mathematics, 9(18), 2228. https://doi.org/10.3390/math9182228