Next Article in Journal
Algorithm Execution Time and Accuracy of NTC Thermistor-Based Temperature Measurements in Time-Critical Applications
Next Article in Special Issue
Coupled Fixed Point Results in Banach Spaces with Applications
Previous Article in Journal
A Survey on Function Spaces of John–Nirenberg Type
Previous Article in Special Issue
Common Positive Solution of Two Nonlinear Matrix Equations Using Fixed Point Results
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Exciting Fixed Point Results under a New Control Function with Supportive Application in Fuzzy Cone Metric Spaces

by
Hasanen A. Hammad
1,* and
Manuel De la Sen
2
1
Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
2
Institute of Research and Development of Processes, University of the Basque Country, 48940 Leioa, Spain
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(18), 2267; https://doi.org/10.3390/math9182267
Submission received: 21 August 2021 / Revised: 9 September 2021 / Accepted: 11 September 2021 / Published: 15 September 2021

Abstract

:
The objective of this paper is to present a new notion of a tripled fixed point (TFP) findings by virtue of a control function in the framework of fuzzy cone metric spaces (FCM-spaces). This function is a continuous one-to-one self-map that is subsequentially convergent (SC) in FCM-spaces. Moreover, by using the triangular property of a FCM, some unique TFP results are shown under modified contractive-type conditions. Additionally, two examples are discussed to uplift our work. Ultimately, to examine and support the theoretical results, the existence and uniqueness solution to a system of Volterra integral equations (VIEs) are obtained.

1. Introduction

Fixed points (FPs) have many applications in several fields, including topology, game theory, artificial intelligence, dynamical systems (and chaos), logic programming, economics, and optimal control.
After Banach [1] presented his principle in 1922, which states “There is a unique FP of single-valued contractive type mapping in a complete metric space” the importance of FPs increased and became more prevalent in non-linear analysis, through it, finding the existence and uniqueness of the solution to differential and integral equations became easy to obtain [2,3,4,5,6]. Moreover, a lot of fixed point problems are realized by many researchers for single and multi-valued mapping in metric spaces, see for example the contributions of [7,8,9,10,11].
The notion of cone metric spaces was utilized in 2007 by Huang and Zhang [12] as an extension of the ideas of ordinary metric spaces. They discussed the topological properties and some FP consequences via the idea of the underlying cone is normal. After a year, some FP theorems were discussed without the normality of cone by Rezapour and Hamlbarani [13]. After that, in this direction, the authors made their contributions in obtaining the FPs under appropriate conditions in the mentioned space, these contributions can be found in [14,15,16].
In 1920 the idea of fuzzy set theory was introduced by Zadeh [17]. Fuzzy set theory has been considered, utilized, and modified in various trends, in which the one direction of this theory is fuzzy logic, which has a lot of vital applications, like engineering fields, business, and education. In education, fuzzy logic is used to evaluate student outcomes, which a teacher can observe directly, for example, see [18,19,20]. The other direction which is not less important than the previous one is “fuzzy metric theory”. The concept of fuzzy metric space (FM-space) was presented by Kramosil and Michalek [21]. They proved some basic properties of the FM-space by using the notion of a fuzzy set on metric space. Many fixed, coupled and TFP results in the setting of FM-space were discussed and obtained, some references in this direction can be found in [22,23,24].
In 2015, cone metric properties have been combined with fuzzy sets on metric space to obtain a new space called fuzzy cone metric spaces (FCM-spaces). This contribution was made by Oner et al. [25], where they also studied topological properties and obtained some FP results with applications under appropriate contractive conditions in FCM-spaces. Moreover, through the concept of FPs, the ideas of quasi-contraction mappings, compatible and weakly compatible mappings, coupled contractive type mappings, rational contraction mappings and their applications to find the existence solution to some integral equations in FCM-spaces were discussed by many authors, see, for example [26,27,28].
In 2006, the concept of mixed-monotone functions and coupled FPs was introduced by Bhaskar and Lakshmikantham [29]. Via this concept, pivotal results in partially ordered metric spaces have been driven by the same authors. There are many papers that have been extracted in this direction, and for brevity, for example, see, [30,31,32,33,34,35].
In 2011, coupled fixed points were extended to triple fixed points by Berinde and Borcut [36]. They presented some important results of this trend in partially ordered metric spaces. To go deeper in this line, we will refer to the references [37,38,39,40,41,42].
The outline of this work is as follows: In Section 2, we give some elementary properties of FCM-spaces. Some new TFP results are obtained by inserting the triangular property with a continuous, one-one and SC self-mapping in FCM-spaces. Additionally, two examples are presented to justify our theoretical results in Section 3, and at the end, in Section 4, the existence and uniqueness solution to a system of VIEs is proved.

2. Fundamental Facts

This part is inherited for the study of elementary properties of a FCM-space.
Definition 1.
Consider Z . A fuzzy set Ω on Z is a function whose domain is Z and the range is [0, 1].
Definition 2
([43]). A binary relation : [ 0 , 1 ] × [ 0 , 1 ] [ 0 , 1 ] is called continuous τ norm, if it fulfills the hypotheses below:
(1) 
is continuous;
(2) 
is associative and commutative;
(3) 
for all e [ 0 , 1 ] , 1 e = e ;
(4) 
for e , f , g , h [ 0 , 1 ] , if e g and f h , then e f g h .
Here, N refers to the set of natural numbers, Ξ represents a Banach space, and ϑ represents a zero element in Ξ .
Definition 3
([12]). A subset Υ of Ξ is called a cone if
(1) 
Υ is closed and Υ { ϑ } ;
(2) 
if e , f R so that e + f 0 , ϰ , Υ , then e ϰ + f Υ ;
(3) 
if both ϰ Υ and ϰ Υ , then ϰ = ϑ .
A partial ordering on a given cone Υ Ξ is defined by ϰ ϰ Υ . ϰ refers to ϰ and ϰ , while ϰ refers to ϰ i n t ( Υ ) . In this manuscript all cones have a nonempty interior.
Definition 4
([21]). A trio Z , Q , is called a FM-space if Z is any non-empty set, is a continuous τ norm and Q is a fuzzy set on Z 2 × ( 0 , ) verifying
(a) 
Q ϰ , , τ > 0 ;
(b) 
Q ϰ , , τ = 1 iff ϰ = ;
(c) 
Q ϰ , , τ = Q , ϰ , τ ;
(d) 
Q ϰ , σ , τ + Q σ , , κ Q ϰ , , τ + κ ;
(e) 
Q ϰ , , . : ( 0 , ) [ 0 , 1 ] is continuous;
for all ϰ , , σ Z , τ , κ > 0 .
Definition 5
([25]). A trio Z , Q c , is called a FCM-space if Υ is a cone of Ξ , Z is an arbitrary set, is a continuous τ norm and Q c is a fuzzy set on Z 2 × i n t ( Υ ) verifying
(a) 
Q c ϰ , , τ > ϑ ;
(b) 
Q c ϰ , , τ = 1 iff ϰ = ;
(c) 
Q c ϰ , , τ = Q c , ϰ , τ ;
(d) 
Q c ϰ , σ , τ + Q c σ , , κ Q c ϰ , , τ + κ ;
(e) 
Q c ϰ , , . : i n t ( Υ ) [ 0 , 1 ] is continuous;
for all ϰ , , σ Z , for τ , κ i n t ( Υ ) .
Definition 6
([25]). Let Z , Q c , be a FCM-space, * Z a sequence { ϰ β } Z is called
  • converging to ϰ * if ϖ ( 0 , 1 ) , τ ϑ and there exists β 1 N so that Q c ϰ β , ϰ * , τ > 1 ϖ , for β β 1 . As another form, one can write lim β ϰ β = ϰ * or ϰ β ϰ * as β ,
  • Cauchy sequence if ϖ ( 0 , 1 ) , τ ϑ and there exists β 1 N so that Q c ϰ β , ϰ α , τ > 1 ϖ , for β , α β 1 ,
  • Z , Q c , complete if every Cauchy sequence is convergent in Z ,
  • Fuzzy cone contractive (FCC) if there is ϱ ( 0 , 1 ) , justifying
    1 Q c ϰ β , ϰ β + 1 , τ 1 ϱ 1 Q c ϰ β 1 , ϰ β , τ 1 , f o r τ ϑ , β 1 .
Definition 7
([25]). Assume that Z , Q c , is a FCM-space. The FCM Q c is triangular if the inequality
1 Q c ϰ , , τ 1 1 Q c ϰ , σ , τ 1 + 1 Q c σ , , τ 1 ,
holds, for all ϰ , , σ Z , for τ ϑ .
Definition 8
([25]). Assume that Z , Q c , is a FCM-space and θ : Z Z . A mapping θ is called FCC if there is ϱ ( 0 , 1 ) so that
1 Q c θ ϰ , θ , τ 1 ϱ 1 Q c ϰ , , τ 1 , ϰ , Z , f o r τ ϑ .
Definition 9
([29]). A pair ( ϰ , ) is called a coupled FP of the mapping Θ : Z × Z Z if
Θ ( ϰ , ) = ϰ a n d Θ ( , ϰ ) = .
Definition 10
([36]). A trio ( ϰ , , σ ) is called a TFP of the mapping Θ : Z 3 Z (where Z 3 = Z × Z × Z ) if
Θ ( ϰ , , σ ) = ϰ , Θ ( , σ , ϰ ) = a n d Θ ( σ , ϰ , ) = σ .
Definition 11
([44]). Let ( Z , d ) be a metric space. A mapping θ : Z Z is called sequentially convergent if we have, for every sequence { x n } , if { θ x n } is convergent then { x n } is convergent. θ is called subsequentially convergent if we have, for every sequence { x n } , if { θ x n } is convergent then { x n } has a convergent subsequence.

3. Main Theorems

Now, we are ready to present our pivotal results.
Theorem 1.
Assume that Z , Q c , is a complete fuzzy cone metric space (CFCM-space), such that Q c is triangular and Θ : Z 3 Z is a given mapping. Let θ be a SC, one-one and continuous mapping, that is, θ : Z Z satisfying
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 a 11 1 Q c θ ϰ , θ , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ , θ Θ , ^ , ˜ , τ 1 + a 33 1 Q c θ ϰ , θ Θ , ^ , ˜ , τ 1 + 1 Q c θ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 ,
for all ϰ , , ϰ ^ , ^ , ϰ ˜ , ˜ Z , for τ ϑ and a 11 , a 22 , a 33 [ 0 , 1 ] with a 11 + 2 a 22 + 2 a 33 < 1 . Then Θ has a TFP. Moreover, if θ is sequentially convergent, then for every ϰ 0 Z , the sequence { Θ 0 β ϰ } converges to this TFP.
Proof. 
Let ϰ 0 , ϰ ^ 0 , ϰ ˜ 0 Z , we build a sequences { ϰ β } , { ϰ ^ β } and { ϰ ˜ β } in Z such that
ϰ β + 1 = Θ ϰ β , ϰ ^ β , ϰ ˜ β , ϰ ^ β + 1 = Θ ϰ ^ β , ϰ ˜ β , ϰ β and ϰ ˜ β + 1 = Θ ϰ ˜ β , ϰ β , ϰ ^ β , β 0 .
From (1), for τ ϑ , we obtain
1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 = 1 Q c θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 a 11 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + a 22 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ ϰ β , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 + a 33 1 Q c θ ϰ β 1 , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 + 1 Q c θ ϰ β , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 = a 11 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + a 22 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + 1 Q c θ ϰ β , θ ϰ β + 1 τ 1 + a 33 1 Q c θ ϰ β 1 , θ ϰ β + 1 , τ 1 + 1 Q c θ ϰ β , θ ϰ β , τ 1 a 11 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + a 22 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + 1 Q c θ ϰ β , θ ϰ β + 1 τ 1 + a 33 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + 1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 ,
this implies that
1 a 22 a 33 1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 a 11 + a 22 + a 33 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 .
Thus, we can write
1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 a 11 + a 22 + a 33 1 a 22 a 33 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 = ρ 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 ,
where ρ = a 11 + a 22 + a 33 1 a 22 a 33 < 1 . Analogously, using (1), for τ ϑ , we get
1 Q c θ ϰ β 1 , θ ϰ β , τ 1 ρ 1 Q c θ ϰ β 2 , θ ϰ β 1 , τ 1 .
It follows from induction, (2) and (3) that
1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 ρ 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 ρ 2 1 Q c θ ϰ β 2 , θ ϰ β 1 , τ 1 . . . ρ β 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 0 as β ,
this implies that the sequence { θ ϰ β } is a FCC. Therefore
lim β Q c θ ϰ β , θ ϰ β + 1 , τ = 1 , for τ ϑ .
Again using (1), for τ ϑ , we have
1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 = 1 Q c θ Θ ϰ ^ β 1 , ϰ ˜ β 1 , ϰ β 1 , θ Θ ϰ ^ β , ϰ ˜ β , ϰ β , , τ 1 a 11 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + a 22 1 Q c θ ϰ ^ β 1 , θ Θ ϰ ^ β 1 , ϰ ˜ β 1 , ϰ β 1 , τ 1 + 1 Q c θ ϰ ^ β , θ Θ ϰ ^ β , ϰ ˜ β , ϰ β , τ 1 + a 33 1 Q c θ ϰ ^ β 1 , θ Θ ϰ ^ β , ϰ ˜ β , ϰ β , τ 1 + 1 Q c θ ϰ ^ β , θ Θ ϰ ^ β 1 , ϰ ˜ β 1 , ϰ β 1 , τ 1 = a 11 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + a 22 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + 1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 τ 1 + a 33 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β + 1 , τ 1 + 1 Q c θ ϰ ^ β , θ ϰ ^ β , τ 1 a 11 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + a 22 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + 1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 τ 1 + a 33 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + 1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 .
By simple calculations, we get
1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 ρ 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 ,
where ρ is the same as in (2). Analogously, using (1), for τ ϑ , we get
1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 ρ 1 Q c θ ϰ ^ β 2 , θ ϰ ^ β 1 , τ 1 .
It follows from induction, (5) and (6) that
1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 ρ 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 ρ 2 1 Q c θ ϰ ^ β 2 , θ ϰ ^ β 1 , τ 1 . . . ρ β 1 Q c θ ϰ ^ 0 , θ ϰ ^ 1 , τ 1 0 as β ,
this leads to the sequence { θ ϰ ^ β } is a FCC. Therefore
lim β Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ = 1 , for τ ϑ .
Similarly, one can show that the sequence { θ ϰ ˜ β } is a FCC. Then
lim β Q c θ ϰ ˜ β , θ ϰ ˜ β + 1 , τ = 1 , for τ ϑ .
Now, for σ > and for τ ϑ , we get
1 Q c θ ϰ β , θ ϰ σ , τ 1 1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 + 1 Q c θ ϰ β + 1 , θ ϰ β + 2 , τ 1 + . . . + 1 Q c θ ϰ σ 1 , θ ϰ σ , τ 1 ρ β 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + ρ β + 1 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + . . . + ρ σ 1 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 = ρ β + ρ β + 1 + . . . + ρ σ 1 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 = ρ β 1 ρ 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 0 as β ,
this shows that { θ ϰ β } is a Cauchy sequence and we have that
lim β , σ Q c θ ϰ β , θ ϰ σ , τ = 1 , for τ ϑ .
By following the same scenario it can easily be proved that { θ ϰ ^ β } and { θ ϰ β } are Cauchy sequences,
lim β , σ Q c θ ϰ ^ β , θ ϰ ^ σ , τ = 1 , for τ ϑ ,
and
lim β , σ Q c θ ϰ ˜ β , θ ϰ ˜ σ , τ = 1 , for τ ϑ .
The completeness of Z leads to there exist a , b , c Z such that θ ϰ β a , θ ϰ ^ β b and θ ϰ ˜ β c as β . Since θ is SC and { ϰ β } , { ϰ ^ β } and { ϰ ˜ β } have convergent subsequences, then there exist a , b , c Z and { θ ϰ β ( k ) } , { θ ϰ ^ β ( k ) } and { θ ϰ ˜ β ( k ) } in Z so that ϰ β ( k ) a , ϰ ^ β ( k ) b and ϰ ˜ β ( k ) c , as k , respectively. The continuity of θ implies that
lim k θ ϰ β ( k ) = θ a , lim k θ ϰ ^ β ( k ) = θ b and lim k θ ϰ ˜ β ( k ) = θ c .
From (1) and (4), for τ ϑ , we have
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ ϰ , τ 1 1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 + 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1 a 11 1 Q c θ ϰ , θ ϰ β 1 , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + a 33 1 Q c θ ϰ , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ ϰ β 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 + 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1 . a 11 1 Q c θ ϰ , θ ϰ β 1 , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + a 33 1 Q c θ ϰ , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ ϰ β 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + ρ β 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1
this yields
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ ϰ , τ 1 a 11 1 a 22 1 Q c θ ϰ , θ ϰ β 1 , τ 1 + a 22 1 a 22 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + a 33 1 a 22 1 Q c θ ϰ , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ ϰ β 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + ρ β 1 a 22 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + 1 1 a 22 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1 0 as β .
Thus, we have Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ ϰ , τ = 1 , this implies that θ Θ ϰ , ϰ ^ , ϰ ˜ = θ ϰ . Analogously, one can obtain that θ Θ ϰ ^ , ϰ ˜ , ϰ = θ ϰ ^ and θ Θ ϰ ˜ , ϰ , ϰ ^ = θ ϰ ˜ . Since θ is one-one, then Θ ϰ , ϰ ^ , ϰ ˜ = ϰ , Θ ϰ ^ , ϰ ˜ , ϰ = ϰ ^ and Θ ϰ ˜ , ϰ , ϰ ^ = ϰ ˜ . This leads to the point ( ϰ , ϰ ^ , ϰ ˜ ) is a TFP of the mapping Θ .
For the uniqueness, consider ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 is another TFP of Θ so that Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 = ϰ 1 , Θ ϰ ^ 1 , ϰ ˜ 1 , ϰ 1 = ϰ ^ 1 and Θ ϰ ˜ 1 , ϰ 1 , ϰ ^ 1 = ϰ ˜ 1 . Using (1), for τ ϑ , we get
1 Q c θ ϰ , θ ϰ 1 , τ 1 = 1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 a 11 1 Q c θ ϰ , θ ϰ 1 , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ 1 , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 + a 33 1 Q c θ ϰ , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 + 1 Q c θ ϰ 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 = ( a 11 + 2 a 33 ) 1 Q c θ ϰ , θ ϰ 1 , τ 1 = ( a 11 + 2 a 33 ) 1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 ( a 11 + 2 a 33 ) a 11 1 Q c θ ϰ , θ ϰ 1 , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ 1 , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 + a 33 1 Q c θ ϰ , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 + 1 Q c θ ϰ 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 = ( a 11 + 2 a 33 ) a 11 + 2 a 33 1 Q c θ ϰ , θ ϰ 1 , τ 1 = ( a 11 + 2 a 33 ) 2 1 Q c θ ϰ , θ ϰ 1 , τ 1 . . . ( a 11 + 2 a 33 ) β 1 Q c θ ϰ , θ ϰ 1 , τ 1 0 as β .
Hence, Q c θ ϰ , θ ϰ 1 , τ = 1 , this implies for τ ϑ that ϰ = ϰ 1 . By the same manner, we can find that ϰ ^ = ϰ ^ 1 and ϰ ˜ = ϰ ˜ 1 . This finishes the proof. □
Corollary 1.
Theorem 1 is still valid if we replace the contractive condition (1) with one of the following:
(i) 
for all ϰ , , ϰ ^ , ^ , ϰ ˜ , ˜ Z , for τ ϑ , we have
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 a 11 1 Q c θ ϰ , θ , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ , θ Θ , ^ , ˜ , τ 1 ,
where a 11 , a 22 [ 0 , 1 ] with a 11 + 2 a 22 < 1 .
(ii) 
for all ϰ , , ϰ ^ , ^ , ϰ ˜ , ˜ Z , for τ ϑ , we get
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 a 11 1 Q c θ ϰ , θ , τ 1 + a 33 1 Q c θ ϰ , θ Θ , ^ , ˜ , τ 1 + 1 Q c θ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 ,
where a 11 , a 33 [ 0 , 1 ] with a 11 + 2 a 33 < 1 .
(iii) 
for all ϰ , , ϰ ^ , ^ , ϰ ˜ , ˜ Z , for τ ϑ , set θ = I (where I is the identity map) and neglect the SC property, we obtain
1 Q c Θ ϰ , ϰ ^ , ϰ ˜ , Θ , ^ , ˜ , τ 1 a 11 1 Q c ϰ , , τ 1 + a 22 1 Q c ϰ , Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c , Θ , ^ , ˜ , τ 1 + a 33 1 Q c ϰ , Θ , ^ , ˜ , τ 1 + 1 Q c , Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 ,
where a 11 , a 11 , a 33 [ 0 , 1 ] with a 11 + 2 a 22 + 2 a 33 < 1 .
To strengthen Theorem 1 by fulfilling its assumptions, we will give the following example:
Example 1.
Consider Z = { 0 } { 1 2 , 1 3 , 1 4 , . . . } and let Q c : Z 2 × ( 0 , ) [ 0 , 1 ] be defined by
Q c ϰ , , τ = τ τ + d ( ϰ , ) , w h e r e d ( ϰ , ) = ϰ , ϰ , Z , τ > 0 .
It is clear that Q c is a triangular and Z , Q c , is a CFCM-space. Define the mappings Θ : Z 3 Z and θ : Z Z by
Θ ( f , g , h ) = ( 0 , 0 , 0 ) , i f f = g = h = 0 , 1 r + s + t + 3 , i f f = 1 r , g = 1 s , h = 1 t , r , s , t 2 ,
and
θ ( f ) = 0 , i f f = 0 , 1 r r , i f f = 1 r , r 2 ,
respectively. Based on (7), for τ > 0 , we get
1 Q c θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w , τ 1 = 1 τ d θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w = 1 τ 1 r + s + t + 3 r + s + t + 3 1 u + v + w + 3 u + v + w + 3 ,
for all r , s , t , u , v , w 2 . Assume that
1 τ 1 r + s + t + 3 r + s + t + 3 1 5 τ 2 r r 1 r + s + t + 3 r + s + t + 3 .
Hence by (8) and (9), we obtain
1 Q c θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w , τ 1 1 5 τ 2 r r 1 r + s + t + 3 r + s + t + 3 2 u u 1 u + v + w + 3 u + v + w + 3 = 1 τ 1 5 r r + 1 5 r r 1 10 r + s + t + 3 r + s + t + 3 1 10 r + s + t + 3 r + s + t + 3 1 5 u u + 1 5 u u 1 10 u + v + w + 3 u + v + w + 3 1 10 u + v + w + 3 u + v + w + 3 1 τ 1 5 r r 1 5 u u + 1 τ 1 5 r r 1 10 r + s + t + 3 r + s + t + 3 1 10 r + s + t + 3 r + s + t + 3 1 5 u u 1 10 u + v + w + 3 u + v + w + 3 1 10 u + v + w + 3 u + v + w + 3 1 τ 1 5 r r 1 5 u u + 1 τ 1 10 r r 1 10 r + s + t + 3 r + s + t + 3 + 1 10 u u 1 10 u + v + w + 3 u + v + w + 3 + 1 10 r r 1 10 u + v + w + 3 u + v + w + 3 + 1 10 u u 1 10 r + s + t + 3 r + s + t + 3 1 5 τ 1 r r 1 u u + 1 10 τ 1 r r 1 r + s + t + 3 r + s + t + 3 + 1 u u 1 u + v + w + 3 u + v + w + 3 + 1 10 τ 1 r r 1 u + v + w + 3 u + v + w + 3 + 1 u u 1 r + s + t + 3 r + s + t + 3 .
hence, we have
1 Q c θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w , τ 1 1 5 1 Q c θ 1 r , θ 1 u , τ 1 + 1 10 1 Q c θ 1 r , θ Θ 1 r , 1 s , 1 t , τ 1 + 1 Q c θ 1 u , θ Θ 1 u , 1 v , 1 w , τ 1 + 1 10 1 Q c θ 1 r , θ Θ 1 u , 1 v , 1 w , τ 1 + 1 Q c θ 1 u , θ Θ 1 r , 1 s , 1 t , τ 1 .
Thus, inequality (10) fulfills all assumptions of Theorem 1 with a 11 = 1 5 , a 22 = a 33 = 1 10 and ( 0 , 0 , 0 ) is a unique TFP of Θ .
Theorem 2.
Suppose that Z , Q c , is a CFCM-space, which Q c is triangular and Θ : Z 3 Z is a given mapping. Let θ : Z Z be a SC, one-one and continuous mapping so that
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 a 11 1 Q c θ ϰ , θ , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ , θ Θ , ^ , ˜ , τ 1 + a 33 1 Q c θ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ Q c θ , θ Θ , ^ , ˜ , τ 1 ,
for all ϰ , , ϰ ^ , ^ , ϰ ˜ , ˜ Z , for τ ϑ and a 11 , a 22 , a 33 [ 0 , 1 ] with a 11 + 2 a 22 + 2 a 33 < 1 . Then Θ owns a TFP. Moreover, if θ is sequentially convergent, then for every ϰ 0 Z , the sequence { Θ 0 β ϰ } converges to this TFP.
Proof. 
Let ϰ 0 , ϰ ^ 0 , ϰ ˜ 0 Z , we form a sequences { ϰ β } , { ϰ ^ β } and { ϰ ˜ β } in Z so that
ϰ β + 1 = Θ ϰ β , ϰ ^ β , ϰ ˜ β , ϰ ^ β + 1 = Θ ϰ ^ β , ϰ ˜ β , ϰ β and ϰ ˜ β + 1 = Θ ϰ ˜ β , ϰ β , ϰ ^ β , β 0 .
Using (11), for τ ϑ , we have
1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 = 1 Q c θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 a 11 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + a 22 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ ϰ β , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 + a 33 1 Q c θ ϰ β , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ Q c θ ϰ β , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 = a 11 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + a 22 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + 1 Q c θ ϰ β , θ ϰ β + 1 τ 1 + a 33 1 Q c θ ϰ β , θ ϰ β , τ Q c θ ϰ β , θ ϰ β + 1 , τ 1 = a 11 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + a 22 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 + 1 Q c θ ϰ β , θ ϰ β + 1 τ 1 + a 33 1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 .
After simplification, we obtain
1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 α 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 ,
where α = a 11 + a 22 1 a 22 a 33 < 1 . Again, using (11), for τ ϑ , we see that
1 Q c θ ϰ β 1 , θ ϰ β , τ 1 α 1 Q c θ ϰ β 2 , θ ϰ β 1 , τ 1 .
It follows by induction, (12) and (13) that
1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 α 1 Q c θ ϰ β 1 , θ ϰ β , τ 1 α 2 1 Q c θ ϰ β 2 , θ ϰ β 1 , τ 1 . . . α β 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 0 as β ,
this leads to { θ ϰ β } β 0 is a FCC and we have that
lim β Q c θ ϰ β , θ ϰ β + 1 , τ = 1 , for τ ϑ .
Again for the sequence { ϰ ^ β } , by (11), for τ ϑ , we get
1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 = 1 Q c θ Θ ϰ ^ β 1 , ϰ ˜ β 1 , ϰ β 1 , θ Θ ϰ ^ β , ϰ ˜ β , ϰ β , , τ 1 a 11 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + a 22 1 Q c θ ϰ ^ β 1 , θ Θ ϰ ^ β 1 , ϰ ˜ β 1 , ϰ β 1 , τ 1 + 1 Q c θ ϰ ^ β , θ Θ ϰ ^ β , ϰ ˜ β , ϰ β , τ 1 + a 33 1 Q c θ ϰ ^ β , θ Θ ϰ ^ β 1 , ϰ ˜ β 1 , ϰ β 1 , τ Q c θ ϰ ^ β , θ Θ ϰ ^ β , ϰ ˜ β , ϰ β , τ 1 = a 11 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + a 22 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + 1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 τ 1 + a 33 1 Q c θ ϰ ^ β , θ ϰ ^ β , τ Q c θ ϰ ^ β , θ ϰ ^ β , τ 1 = a 11 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + a 22 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 + 1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 τ 1 + a 33 1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 .
Hence, one can write
1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 α 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 ,
where α is the same as in (12). Again, from (11), for τ ϑ , we get
1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 α 1 Q c θ ϰ ^ β 2 , θ ϰ ^ β 1 , τ 1 .
It follows by induction, (15) and (16) that
1 Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ 1 α 1 Q c θ ϰ ^ β 1 , θ ϰ ^ β , τ 1 α 2 1 Q c θ ϰ ^ β 2 , θ ϰ ^ β 1 , τ 1 . . . α β 1 Q c θ ϰ ^ 0 , θ ϰ ^ 1 , τ 1 0 as β ,
therefore, the sequence { θ ϰ ^ β } β 0 is a FCC,
lim β Q c θ ϰ ^ β , θ ϰ ^ β + 1 , τ = 1 , for τ ϑ .
Similarly, one can illustrate that the sequence { θ ϰ ˜ β } β ϑ is a FCC,
lim β Q c θ ϰ ˜ β , θ ϰ ˜ β + 1 , τ = 1 , for τ ϑ .
Now, for σ > and for τ ϑ , we get
1 Q c θ ϰ β , θ ϰ σ , τ 1 1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 + 1 Q c θ ϰ β + 1 , θ ϰ β + 2 , τ 1 + . . . + 1 Q c θ ϰ σ 1 , θ ϰ σ , τ 1 α β 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + α β + 1 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + . . . + α σ 1 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 = α β + α β + 1 + . . . + α σ 1 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 = α β 1 α 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 0 as β ,
this proves that { θ ϰ β } is a Cauchy sequence and we have that
lim β , σ Q c θ ϰ β , θ ϰ σ , τ = 1 , for τ ϑ .
By following the same manner it can easily be showed that { θ ϰ ^ β } and { θ ϰ β } are also Cauchy sequences,
lim β , σ Q c θ ϰ ^ β , θ ϰ ^ σ , τ = 1 , for τ ϑ ,
and
lim β , σ Q c θ ϰ ˜ β , θ ϰ ˜ σ , τ = 1 , for τ ϑ .
The completeness of Z leads to there are a , b , c Z so that θ ϰ β a , θ ϰ ^ β b and θ ϰ ˜ β c as β . Because θ is SC and { ϰ β } , { ϰ ^ β } and { ϰ ˜ β } have convergent subsequences, then there are a , b , c Z and { θ ϰ β ( k ) } , { θ ϰ ^ β ( k ) } and { θ ϰ ˜ β ( k ) } in Z so that ϰ β ( k ) a , ϰ ^ β ( k ) b and ϰ ˜ β ( k ) c , as k , respectively. The continuity of θ implies that
lim k θ ϰ β ( k ) = θ a , lim k θ ϰ ^ β ( k ) = θ b and lim k θ ϰ ˜ β ( k ) = θ c .
From (11) and (14), for τ ϑ , we get
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ ϰ , τ 1 1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , τ 1 + 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1 a 11 1 Q c θ ϰ , θ ϰ β 1 , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + a 33 1 Q c θ ϰ β 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + 1 Q c θ ϰ β , θ ϰ β + 1 , τ 1 + 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1 a 11 1 Q c θ ϰ , θ ϰ β 1 , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + a 33 1 Q c θ ϰ β 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + ρ β 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1 .
After simplification, for τ ϑ , we obtain
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ ϰ , τ 1 a 11 1 a 22 1 Q c θ ϰ , θ ϰ β 1 , τ 1 + a 22 1 a 22 1 Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + a 33 1 a 22 1 Q c θ ϰ β 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ Q c θ ϰ β 1 , θ Θ ϰ β 1 , ϰ ^ β 1 , ϰ ˜ β 1 , τ 1 + ρ β 1 a 22 1 Q c θ ϰ 0 , θ ϰ 1 , τ 1 + 1 1 a 22 1 Q c θ Θ ϰ β , ϰ ^ β , ϰ ˜ β , θ ϰ , τ 1 0 as β .
Hence, we have Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ ϰ , τ = 1 , this implies that θ Θ ϰ , ϰ ^ , ϰ ˜ = θ ϰ . Similarly, one can obtain that θ Θ ϰ ^ , ϰ ˜ , ϰ = θ ϰ ^ and θ Θ ϰ ˜ , ϰ , ϰ ^ = θ ϰ ˜ . Since θ is one-one, then Θ ϰ , ϰ ^ , ϰ ˜ = ϰ , Θ ϰ ^ , ϰ ˜ , ϰ = ϰ ^ and Θ ϰ ˜ , ϰ , ϰ ^ = ϰ ˜ . This implies that the point ( ϰ , ϰ ^ , ϰ ˜ ) is a TFP of the mapping Θ .
For the uniqueness, let ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 be another TFP of Θ so that Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 = ϰ 1 , Θ ϰ ^ 1 , ϰ ˜ 1 , ϰ 1 = ϰ ^ 1 and Θ ϰ ˜ 1 , ϰ 1 , ϰ ^ 1 = ϰ ˜ 1 . Using (11), for τ ϑ , we have
1 Q c θ ϰ , θ ϰ 1 , τ 1 = 1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 a 11 1 Q c θ ϰ , θ ϰ 1 , τ 1 + a 22 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ ϰ 1 , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 + a 33 1 Q c θ ϰ 1 , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ Q c θ ϰ 1 θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 = ( a 11 + a 33 ) 1 Q c θ ϰ , θ ϰ 1 , τ 1 = ( a 11 + a 33 ) 1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ ϰ 1 , ϰ ^ 1 , ϰ ˜ 1 , τ 1 ( a 11 + a 33 ) 2 1 Q c θ ϰ , θ ϰ 1 , τ 1 . . . ( a 11 + a 33 ) β 1 Q c θ ϰ , θ ϰ 1 , τ 1 0 as β .
Hence, Q c θ ϰ , θ ϰ 1 , τ = 1 , this implies that, for τ ϑ , ϰ = ϰ 1 . By the same manner, one can obtain ϰ ^ = ϰ ^ 1 and ϰ ˜ = ϰ ˜ 1 . This completes the proof. □
Corollary 2.
Theorem 2 remains true if we replace the hypothesis (11) with one of the following hypotheses:
(i) 
for all ϰ , , ϰ ^ , ^ , ϰ ˜ , ˜ Z , for τ ϑ , we have
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 a 11 1 Q c θ ϰ , θ , τ 1 + a 33 1 Q c θ , θ Θ , ^ , ˜ , τ Q c θ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 ,
where a 11 , a 33 [ 0 , 1 ] with a 11 + 2 a 33 < 1 .
(ii) 
for all ϰ , , ϰ ^ , ^ , ϰ ˜ , ˜ Z , for τ ϑ , put θ = I and ignore the SC property, we get
1 Q c Θ ϰ , ϰ ^ , ϰ ˜ , Θ , ^ , ˜ , τ 1 a 11 1 Q c ϰ , , τ 1 + a 22 1 Q c ϰ , Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c , Θ , ^ , ˜ , τ 1 + a 33 1 Q c , Θ ϰ , ϰ ^ , ϰ ˜ , τ Q c , Θ , ^ , ˜ , τ 1 ,
where a 11 , a 11 , a 33 [ 0 , 1 ] with a 11 + 2 a 22 + 2 a 33 < 1 .
In order to support Theorem 2, we present the following example:
Example 2.
Assume that all assumptions of Example 1 hold. Define the mappings Θ : Z 3 Z , θ : Z Z and the function : [ 0 , 1 ] [ 0 , 1 ] by
Θ ( f , g , h ) = ( 0 , 0 , 0 ) , i f f = g = h = 0 , 1 r + s + t + 1 , i f f = 1 r , g = 1 s , h = 1 t , r , s , t 2 ,
θ ( f ) = 0 , i f f = 0 , 1 r r , i f f = 1 r , r 2 ,
and ( λ , ϑ ) = λ . ϑ , for all λ , ϑ [ 0 , 1 ] respectively. Using (7), for τ ϑ , we get
1 Q c θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w , τ 1 = 1 τ d θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w = 1 τ 1 r + s + t + 1 r + s + t + 1 1 u + v + w + 1 u + v + w + 1 ,
for all r , s , t , u , v , w 2 . Consider the assumption (9) holds, then by (17), we can write
1 Q c θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w , τ 1 1 5 τ 2 r r 1 r + s + t + 1 r + s + t + 1 2 u u 1 u + v + w + 1 u + v + w + 1 = 1 τ 1 5 r r + 1 5 r r 1 10 r + s + t + 1 r + s + t + 1 1 10 r + s + t + 1 r + s + t + 1 1 5 u u + 1 5 u u 1 10 u + v + w + 1 u + v + w + 1 1 10 u + v + w + 1 u + v + w + 1 1 τ 1 5 r r 1 5 u u + 1 τ 1 5 r r 1 10 r + s + t + 1 r + s + t + 1 1 10 r + s + t + 1 r + s + t + 1 1 5 u u 1 10 u + v + w + 1 u + v + w + 1 1 10 u + v + w + 1 u + v + w + 1 = 1 τ 1 5 r r 1 5 u u + 1 τ 1 10 r r 1 10 r + s + t + 1 r + s + t + 1 + 1 10 u u 1 10 u + v + w + 1 u + v + w + 1 + 1 10 r r 3 10 u u + 3 10 u + v + w + 1 u + v + w + 1 1 10 r + s + t + 1 r + s + t + 1 1 τ 1 5 r r 1 5 u u + 1 τ 1 10 r r 1 10 r + s + t + 1 r + s + t + 1 + 1 10 u u 1 10 u + v + w + 1 u + v + w + 1 + 1 τ 1 10 r r 3 10 u u + 3 10 u + v + w + 1 u + v + w + 1 1 10 r + s + t + 1 r + s + t + 1 .
It is easy to check
1 10 r r 3 10 u u + 3 10 u + v + w + 1 u + v + w + 1 1 10 r + s + t + 1 r + s + t + 3 1 10 u u 10 r + s + t + 1 r + s + t + 1 . 10 u u 10 u + v + w + 1 u + v + w + 1 1 10 u u 10 r + s + t + 1 r + s + t + 1 10 u u 10 u + v + w + 1 u + v + w + 1 .
Therefore,
1 Q c θ Θ 1 r , 1 s , 1 t , θ Θ 1 u , 1 v , 1 w , τ 1 1 τ 1 5 r r 1 5 u u + 1 τ 1 10 r r 1 10 r + s + t + 1 r + s + t + 1 + 1 10 u u 1 10 u + v + w + 1 u + v + w + 1 + 1 10 u u 10 r + s + t + 1 r + s + t + 1 10 u u 10 u + v + w + 1 u + v + w + 1 = 1 5 1 Q c θ 1 r , θ 1 u , τ 1 + 1 10 1 Q c θ Θ 1 r , 1 s , 1 t , θ 1 r , τ 1 + 1 Q c θ Θ 1 u , 1 v , 1 w , θ 1 u , τ 1 + 1 10 1 Q c θ 1 u , θ Θ 1 r , 1 s , 1 t , τ Q c θ 1 u , θ Θ 1 u , 1 v , 1 w , τ 1 .
Thus, all requirements of Theorem 2 are fulfilled with a 11 = 1 5 , a 22 = a 33 = 1 10 and ( 0 , 0 , 0 ) is a unique TFP of Θ .

4. Solving a System of Integral Equations

This part is devoted to applying Theorem 1 to study the existence solution to the system of Volterra integral equations (VIEs). The solution of the system of VIEs depends on finding a unique TFP of the mappings Θ and θ which are described in (20) to support our theoretical results.
Assume that Z = ( C [ 0 , 1 ] , R ) is the space of all real continuous functions on [ 0 , 1 ] . Define a supremum norm on Z by
ϰ = sup r [ 0 , 1 ] ϰ ( r ) , ϰ Z .
Let d : Z × Z R be a metric defined as
d ( ϰ , ) = sup r [ 0 , 1 ] ϰ ( r ) ( r ) = ϰ , ϰ , Z .
Because ★ is continuous τ norm, we have ( λ , ϑ ) = λ . ϑ , for all λ , ϑ [ 0 , 1 ] . Define a fuzzy metric Q c : Z × Z × ( 0 , ) [ 0 , 1 ] by
Q c ϰ , , τ = τ τ + d ( ϰ , ) , d ( ϰ , ) = ϰ ,
for ϰ , Z and for τ ϑ . Clearly Q c is triangular and Z , Q c , is a CFCM-space.
Consider a system of VIEs as follows:
ϰ ( σ ) = ξ 1 ( σ ) + 0 1 Ω 1 ( σ , μ , ϰ ( μ ) ) d μ , ϰ ^ ( σ ) = ξ 2 ( σ ) + 0 1 Ω 2 ( σ , μ , ϰ ^ ( μ ) ) d μ , ϰ ˜ ( σ ) = ξ 3 ( σ ) + 0 1 Ω 3 ( σ , μ , ϰ ˜ ( μ ) ) d μ ,
where σ R , and ξ 1 , ξ 2 , ξ 3 Z . System (19) will be considered under hypotheses below:
Hypothesis 1 (H1).
The functions ξ i : [ 0 , 1 ] R and Ω i : [ 0 , 1 ] × [ 0 , 1 ] × R R ( i = 1 , 2 , 3 ) ;
Hypothesis 2 (H2).
for ϰ , , ^ κ ˜ B , ϰ ^ , ˜ , κ C and ϰ ˜ , , κ ^ D , where B , C , D Z , we define
B ( ϰ , ϰ ^ , ϰ ˜ ) ( σ ) = 0 1 Ω 1 ( σ , μ , ( ϰ , ϰ ^ , ϰ ˜ ) ( μ ) ) d μ C ( , ^ , ˜ ) ( σ ) = 0 1 Ω 2 ( σ , μ , ( , ^ , ˜ ) ( μ ) ) d μ D ( κ , κ ^ , κ ˜ ) ( σ ) = 0 1 Ω 3 ( σ , μ , ( κ , κ ^ , κ ˜ ) ( μ ) ) d μ , σ [ 0 , 1 ] ;
Hypothesis 3 (H3).
there is a constant Λ [ 0 , 1 ] so that
B ( ϰ , ϰ ^ , ϰ ˜ ) * + ξ 1 C ( , ^ , ˜ ) * ( σ ) + ξ 2 Λ Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) C ( , ^ , ˜ ) * + ξ 2 D ( κ , κ ^ , κ ˜ ) * ( σ ) + ξ 3 Λ Ω C ( , ^ , ˜ ) , D ( κ , κ ^ , κ ˜ ) B ( ϰ , ϰ ^ , ϰ ˜ ) * + ξ 1 D ( κ , κ ^ , κ ˜ ) * ( σ ) + ξ 3 Λ Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , D ( κ , κ ^ , κ ˜ ) ,
where
Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) = max B ϰ C , B ϰ , ϰ ^ , ϰ ˜ * + B ξ 1 B ϰ + C , ^ , ˜ * + C ξ 2 C , C , ^ , ˜ * + C ξ 2 B ϰ + B ϰ , ϰ ^ , ϰ ˜ * + B ξ 1 C ,
similarly Ω C ( , ^ , ˜ ) , D ( κ , κ ^ , κ ˜ ) and Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , D ( κ , κ ^ , κ ˜ ) ,
where B ϰ , ϰ ^ , ϰ ˜ * , C ( , ^ , ˜ ) * , D ( κ , κ ^ , κ ˜ ) * , B ξ 1 , C ξ 2 , D ξ 3 , B ϰ , C , D κ Z .
Now, we state and prove our main theorem in this part.
Theorem 3.
Via hypotheses ( H 1 ) ( H 3 ) , system (19) has a unique solution in Z .
Proof. 
Define operators Θ : Z 3 Z and θ : Z Z by
Θ ( ϰ , ϰ ^ , ϰ ˜ ) = B ( ϰ , ϰ ^ , ϰ ˜ ) + ξ 1 , θ ( ϰ ) = B ϰ , Θ ( , ^ , ˜ ) = C ( , ^ , ˜ ) + ξ 2 , θ ( ) = C , Θ ( κ , κ ^ , κ ˜ ) = D ( κ , κ ^ , κ ˜ ) + ξ 3 , θ ( κ ) = D κ .
Therefore
θ Θ ( ϰ , ϰ ^ , ϰ ˜ ) = θ B ( ϰ , ϰ ^ , ϰ ˜ ) + ξ 1 = B B ( ϰ , ϰ ^ , ϰ ˜ ) + B ξ 1 = B ( ϰ , ϰ ^ , ϰ ˜ ) * + B ξ 1 ,
θ Θ ( , ^ , ˜ ) = θ C ( , ^ , ˜ ) + ξ 2 = C C ( , ^ , ˜ ) + C ξ 2 = C ( , ^ , ˜ ) * + C ξ 2 ,
and
θ Θ ( κ , κ ^ , κ ˜ ) = θ D ( κ , κ ^ , κ ˜ ) + ξ 3 = D D ( κ , κ ^ , κ ˜ ) + D ξ 3 = D ( κ , κ ^ , κ ˜ ) * + D ξ 3 ,
where B ( ϰ , ϰ ^ , ϰ ˜ ) * = B B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) * = C C ( , ^ , ˜ ) and D ( κ , κ ^ , κ ˜ ) * = D D ( κ , κ ^ , κ ˜ ) . Now, we shall finish the proof by the following cases:
(i)
If Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) = B ϰ C , then from (18)–(20) and (22), we get
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 = 1 τ θ Θ ϰ , ϰ ^ , ϰ ˜ θ Θ , ^ , ˜ = Λ τ Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) = Λ τ B ϰ C = Λ τ 1 Q c θ ϰ , θ , τ 1 ,
for τ ϑ , and for ϰ , ^ , B , ϰ ^ , ˜ C and ϰ ˜ , D . Hence Θ and θ fulfills the stipulations of Theorem 1 with a 11 = Λ and a 22 = a 33 = 0 in (1). Therefore VIEs (19) have a unique solution in Z.
(ii)
If
Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) = B ϰ , ϰ ^ , ϰ ˜ * + B ξ 1 B ϰ + C , ^ , ˜ * + C ξ 2 C ,
it follows from (18)–(20) and (22), we get
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 = 1 τ θ Θ ϰ , ϰ ^ , ϰ ˜ θ Θ , ^ , ˜ = Λ τ Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) = Λ τ B ϰ , ϰ ^ , ϰ ˜ * + B ξ 1 B ϰ + C , ^ , ˜ * + C ξ 2 C = Λ τ 1 Q c θ ϰ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 + 1 Q c θ , θ Θ , ^ , ˜ , τ 1 ,
for τ ϑ , and for ϰ , ^ , B , ϰ ^ , ˜ C and ϰ ˜ , D . Hence Θ and θ justify the assumptions of Theorem 1 with a 11 = a 33 = 0 and a 22 = Λ in (1). Thus, VIEs (19) have a unique solution in Z.
(iii)
If
Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) = C , ^ , ˜ * + C ξ 2 B ϰ + B ϰ , ϰ ^ , ϰ ˜ * + B ξ 1 C ,
it follows from (18)–(20) and (22), we get
1 Q c θ Θ ϰ , ϰ ^ , ϰ ˜ , θ Θ , ^ , ˜ , τ 1 = 1 τ θ Θ ϰ , ϰ ^ , ϰ ˜ θ Θ , ^ , ˜ = Λ τ Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , C ( , ^ , ˜ ) = Λ τ C , ^ , ˜ * + C ξ 2 B ϰ + B ϰ , ϰ ^ , ϰ ˜ * + B ξ 1 C = Λ τ 1 Q c θ ϰ , θ Θ , ^ , ˜ , τ 1 + 1 Q c θ , θ Θ ϰ , ϰ ^ , ϰ ˜ , τ 1 ,
for τ ϑ , and for ϰ , ^ , B , ϰ ^ , ˜ C and ϰ ˜ , D . Hence Θ and θ satisfy the hypotheses of Theorem 1 with a 11 = a 22 = 0 and a 33 = Λ in (1). Thus, VIEs (19) have a unique solution in Z.
Analogously, if we take in our consideration the definitions of Ω C ( , ^ , ˜ ) , D ( κ , κ ^ , κ ˜ ) and Ω B ( ϰ , ϰ ^ , ϰ ˜ ) , D ( κ , κ ^ , κ ˜ ) and apply the same steps ( i ) ( i i i ) , we conclude that the system (19) has a unique solution in Z .

5. Conclusions

We presented in this manuscript a new concept of TFP results by using a control function in the setting of FCM-spaces. Additionally, some uniqueness TFP theorems are illustrated via the triangular property of FCM by using different contractive type conditions. The control function is a continuous one-to-one self-map that is subsequentially convergent in FCM-spaces. Further, the existence and uniqueness solution of a system of VIEs are studied. In lieu of VIEs, the authors use various types of applications such as Riemann integral equations, Lebesgue integral equations, and nonlinear integral equations to support their findings.

Author Contributions

Funding acquisition, M.D.l.S.; Methodology, M.D.l.S.; Writing—original draft, H.A.H. and M.D.l.S. All authors contributed equally and significantly in writing this article. Both authors have read and agreed to the published version of the manuscript.

Funding

This work was supported in part by the Basque Government under Grant IT1207-19.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data used to support the findings of this study are included within the article.

Acknowledgments

The authors thank the Basque Government for Grant IT1207-19.

Conflicts of Interest

The data used to support the findings of this study are available from the corresponding author upon request. The authors declare that they have no competing interests concerning the publication of this article.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Fredholm, E.I. Sur une classe d’equations fonctionnelles. Acta Math. 1903, 27, 365–390. [Google Scholar] [CrossRef]
  3. Rus, M.D. A note on the existence of positive solution of Fredholm integral equations. Fixed Point Theory 2004, 5, 369–377. [Google Scholar]
  4. Berenguer, M.I.; Munoz, M.V.F.; Guillem, A.I.G.; Galan, M.R. Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation. Fixed Point Theory Appl. 2009, 2009, 735638. [Google Scholar] [CrossRef] [Green Version]
  5. Hammad, H.A.; la Sen, M.D. A Solution of Fredholm integral equation by using the cyclic η s q -rational contractive mappings technique in b-metric-like spaces. Symmetry 2019, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
  6. Hammad, H.A.; la Sen, M.D. Solution of nonlinear integral equation via fixed point of cyclic α s q -rational contraction mappings in metric-like spaces. Bull. Braz. Math. Soc. New Ser. 2020, 51, 81–105. [Google Scholar] [CrossRef]
  7. Kannan, R. Some results on fixed points. Bull. The Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
  8. Chatterjea, S.K. Fixed point theorems. Comptes Rendus de l’Academie Bulg. des Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
  9. Reich, S. Remarks concerning contraction mappings. Can. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
  10. Daffer, P.Z.; Kaneko, H. Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 1995, 192, 655–666. [Google Scholar] [CrossRef]
  11. Kaewkhao, A.; Neammanee, K. Fixed point theorems of multivalued Zamfirescu mapping. J. Math. Res. 2020, 2, 150–156. [Google Scholar]
  12. Huang, L.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468–1476. [Google Scholar] [CrossRef] [Green Version]
  13. Rezapour, S.; Hamlbarani, R. Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings”. J. Math. Anal. Appl. 2008, 345, 719–724. [Google Scholar] [CrossRef] [Green Version]
  14. Alnafei, S.H.; Radenović, S.; Shahzad, N. Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett. 2011, 24, 2162–2166. [Google Scholar] [CrossRef] [Green Version]
  15. Kumar, A.; Rathee, S.; Kumar, N. the point of coincidence and common fixed point for three mappings in cone metric paces. J. Appl. Math. 2013, 2013, 146794. [Google Scholar] [CrossRef]
  16. Radenović, S. A pair of nonself mappings in cone metric space. Kragujev. J. Math. 2012, 36, 189–198. [Google Scholar]
  17. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
  18. Ivanova, V.; Zlatanov, B. Implementation of fuzzy functions aimed at fairer grading of students’ tests. Educ. Sci. 2019, 9, 214. [Google Scholar] [CrossRef] [Green Version]
  19. Ivanova, V.; Zlatanov, B. Application of fuzzy logic in online test evaluation in English as a foreign language at university level. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2172, p. 040009. [Google Scholar]
  20. Rusmiari, N.; Putra, D.; Sasmita, A. Fuzzy logic method for evaluation of difficulty level of exam and student graduation. Int. Comput. Sci. 2013, 10, 223–229. [Google Scholar]
  21. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
  22. Gregori, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
  23. Rehman, S.U.; Chinram, R.; Boonpok, C. Rational type fuzzy-contraction results in fuzzy metric spaces with an application. J. Math. 2021, 2021, 6644491. [Google Scholar]
  24. Hammad, H.A.; la Sen, M.D. A weak tripled contraction for solving a fuzzy global optimization problem in fuzzy metric spaces. Symmetry 2021, 13, 565. [Google Scholar] [CrossRef]
  25. Oner, T.; Kandemir, M.B.; Tanay, B. Fuzzy cone metric spaces. J. Nonlinear Sci. Appl. 2015, 8, 610–616. [Google Scholar] [CrossRef] [Green Version]
  26. Jabeen, S.; Rehman, S.U.; Zheng, Z.; Wei, W. Weakly compatible and Quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations. Adv. Differ. 2020, 2020, 16. [Google Scholar] [CrossRef]
  27. Tiwari, S.K.; Saxena, A.; Bhaumik, S. Coupled fixed point theorem for mapping satisfying integral type Contraction on cone metric spaces. Adv. Dyn. Syst. Appl. (ADSA) 2020, 15, 73–82. [Google Scholar] [CrossRef]
  28. Rehman, S.U.; Aydi, H. Rational fuzzy cone contractions on fuzzy cone metric spaces with an application to Fredholm integral equations. J. Funct. Spaces 2021, 2021, 5527864. [Google Scholar]
  29. Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. Theory Methods Appl. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
  30. Abbas, M.; Khan, M.A.; Radenović, S. Common coupled fixed point theorems in cone metric spaces for w-compatible mappings. Appl. Math. Comput. 2010, 217, 195–202. [Google Scholar] [CrossRef]
  31. Aydi, H.; Postolache, M.; Shatanawi, W. Coupled fixed point results for (ψ,ϕ)-weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 2012, 63, 298–309. [Google Scholar] [CrossRef] [Green Version]
  32. Berinde, V. Coupled fixed point theorems for contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2012, 75, 3218–3228. [Google Scholar] [CrossRef]
  33. Choudhury, B.S.; Maity, P. Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 2011, 54, 73–79. [Google Scholar] [CrossRef]
  34. Choudhury, B.S.; Metiya, N.; Postolache, M. A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
  35. Hammad, H.A.; la Sen, M.D. A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations. Mathematics 2019, 7, 634. [Google Scholar] [CrossRef] [Green Version]
  36. Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
  37. Choudhury, B.S.; Karapınar, E.K.; Kundu, A. Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces. Int. J. Math. Math. Sci. 2012, 2012, 329298. [Google Scholar] [CrossRef] [Green Version]
  38. Mustafa, Z.; Roshan, J.R.; Parvaneh, V. Existence of a tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations. J. Inequalities Appl. 2013, 2013, 453. [Google Scholar] [CrossRef] [Green Version]
  39. Aydi, H.; Karapinar, E.; Postolache, M. Tripled coincidence point theorems for weak φ-contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 2012, 44. [Google Scholar] [CrossRef] [Green Version]
  40. Hammad, H.A.; la Sen, M.D. A technique of tripled coincidence points for solving a system of nonlinear integral equations in POCML spaces. J. Inequalities Appl. 2020, 2020, 211. [Google Scholar] [CrossRef]
  41. Hammad, H.A.; la Sen, M.D. A tripled fixed point technique for solving a tripled-system of integral equations and Markov process in CCbMS. Adv. Differ. Equ. 2020, 2020, 567. [Google Scholar] [CrossRef]
  42. Hammad, H.A.; Agarwal, P.; Guirao, L.G.J. Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces. Mathematics 2021, 9, 2012. [Google Scholar] [CrossRef]
  43. Schweizer, B.; Sklar, A. Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics; NorthHolland: New York, NY, USA, 1983. [Google Scholar]
  44. Branciari, A. A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces. Univ. Debreceniensis 2000, 57, 31–37. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Hammad, H.A.; De la Sen, M. Exciting Fixed Point Results under a New Control Function with Supportive Application in Fuzzy Cone Metric Spaces. Mathematics 2021, 9, 2267. https://doi.org/10.3390/math9182267

AMA Style

Hammad HA, De la Sen M. Exciting Fixed Point Results under a New Control Function with Supportive Application in Fuzzy Cone Metric Spaces. Mathematics. 2021; 9(18):2267. https://doi.org/10.3390/math9182267

Chicago/Turabian Style

Hammad, Hasanen A., and Manuel De la Sen. 2021. "Exciting Fixed Point Results under a New Control Function with Supportive Application in Fuzzy Cone Metric Spaces" Mathematics 9, no. 18: 2267. https://doi.org/10.3390/math9182267

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop