On the Complex-Valued Distribution Function of Charged Particles in Magnetic Fields
Abstract
:1 | Introduction | 1 |
2 | The Distribution Function and the Boltzmann Equation | 2 |
3 | The Complex-Valued Distribution Function | 4 |
3.1 Motivation | 4 | |
3.2 The Complex-Valued Maxwellian Distribution Function | 5 | |
3.3 Moments of the Complex-Valued Boltzmann Distribution Function | 6 | |
3.4 Moments of the Boltzmann Equation for the Complex-Valued Distribution Function | 8 | |
4 | Conclusions and Outlook | 10 |
References | 11 |
1. Introduction
2. The Distribution Function and the Boltzmann Equation
3. The Complex-Valued Distribution Function
3.1. Motivation
3.2. The Complex-Valued Maxwellian Distribution Function
- –
- represents the number of particles/total mass;
- –
- stands for the momentum density;
- –
- is connected to the magnetic field;
- –
- is related to the (total) energy density, now also including the magnetic contributions.
3.3. Moments of the Complex-Valued Boltzmann Distribution Function
3.4. Moments of the Boltzmann Equation for the Complex-Valued Distribution Function
4. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KCS | Kinetic Consistent Schemes |
LBS | Lattice Boltzmann Schemes |
MHD | Magnetohydrodynamics |
References
- Boltzmann, L. Lectures on Gas Theory; University of California Press: Oakland, CA, USA, 1964. [Google Scholar]
- Vlasov, A.A. The Vibrational Properties of an Electron Gas. Zh. Eksp. Teor. Fiz. 1938, 8, 291. [Google Scholar] [CrossRef]
- Croisille, J.P.; Khanfir, R.; Chanteur, G. Numerical Simulation of the MHD Equations by a Kinetic-Type Method. J. Sci. Comp. 1995, 10, 81–92. [Google Scholar] [CrossRef]
- Huba, J.D.; Lyon, J.G. A New 3D MHD Algorithm: The Distribution Function Method. J. Plasma Phys. 1999, 61, 391–405. [Google Scholar] [CrossRef]
- Dellar, P.J. Lattice Kinetic Schemes for Magnetohydrodynamics. J. Comp. Phys. 2002, 179, 95–126. [Google Scholar] [CrossRef]
- Bouchut, F. Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws. J. Stat. Phys. 1999, 95, 113–170. [Google Scholar] [CrossRef]
- Chetverushkin, B.N.; D’Ascenzo, N.; Saveliev, V.I. Kinetically Consistent Magnetogasdynamics Equations and their Use in Supercomputer Computations. Dokl. Math. 2014, 90, 495–498. [Google Scholar] [CrossRef]
- Chetverushkin, B.N.; D’Ascenzo, N.; Saveliev, A.V.; Saveliev, V.I. Novel Kinetically Consistent Algorithm for Magneto Gas Dynamics. Appl. Math. Lett. 2017, 72, 75–81. [Google Scholar] [CrossRef]
- Chetverushkin, B.N.; Saveliev, A.V.; Saveliev, V.I. A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic Phenomena. Comp. Math. Math. Phys. 2018, 58, 1384–1394. [Google Scholar] [CrossRef]
- Chetverushkin, B.; D’Ascenzo, N.; Ishanov, S.; Saveliev, V. Hyperbolic Type Explicit Kinetic Scheme of Magneto Gas Dynamics for High Performance Computing Systems. Rus. J. Num. Anal. Math. Mod. 2015, 30, 27–36. [Google Scholar] [CrossRef]
- Chetverushkin, B.N.; Saveliev, A.V.; Saveliev, V.I. Compact Quasi-Gasdynamic System for High-Performance Computations. Comp. Math. Math. Phys. 2019, 59, 493–500. [Google Scholar] [CrossRef]
- Chetverushkin, B.N.; Saveliev, A.V.; Saveliev, V.I. Kinetic Algorithms for Modeling Conductive Fluids Flow on High-Performance Computing Systems. Dokl. Math. 2019, 100, 577–581. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation for Fluid Mechanics and Beyond; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Chetverushkin, B.N. Kinetic Schemes and Quasi-Gas Dynamic System of Equations; CIMNE: Barcelona, Spain, 2008. [Google Scholar]
- Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Kinetische Theorie II 1872, 66, 275–370. [Google Scholar]
- Gombosi, T.I. Gaskinetic Theory; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Physical Kinetics; Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1971; Volume 10. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Course of Theoretical Physics; Pergamon Press: Oxford, UK, 2011; Volume 2. [Google Scholar]
- Bronstein, I.N.; Semendyayev, K.A.; Musiol, G.; Muehlig, H. Handbook of Mathematics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Alfvén, H. Existence of Electromagnetic-Hydrodynamic Waves. Nature 1942, 150, 405–406. [Google Scholar] [CrossRef]
- Webb, G. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ahern, S. Scientific Application Requirements for Leadership Computing at the Exascale; Technical Report TM-2007/238; ORNL: Oak Ridge, TN, USA, 2007. [Google Scholar]
- Cercignani, C.; Kremer, G.M. The Relativistic Boltzmann Equation: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Goto, K. Relativistic Magnetohydrodynamics. Prog. Theor. Phys. 1958, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tam, K.; Kiang, D. The Relativistic Boltzmann Equation and the Equations of Magnetohydrodynamics with Radiative Reaction. Prog. Theor. Phys. 1979, 62, 1245–1252. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saveliev, A. On the Complex-Valued Distribution Function of Charged Particles in Magnetic Fields. Mathematics 2021, 9, 2382. https://doi.org/10.3390/math9192382
Saveliev A. On the Complex-Valued Distribution Function of Charged Particles in Magnetic Fields. Mathematics. 2021; 9(19):2382. https://doi.org/10.3390/math9192382
Chicago/Turabian StyleSaveliev, Andrey. 2021. "On the Complex-Valued Distribution Function of Charged Particles in Magnetic Fields" Mathematics 9, no. 19: 2382. https://doi.org/10.3390/math9192382
APA StyleSaveliev, A. (2021). On the Complex-Valued Distribution Function of Charged Particles in Magnetic Fields. Mathematics, 9(19), 2382. https://doi.org/10.3390/math9192382