Initial-Boundary Value Problems for Nonlinear Dispersive Equations of Higher Orders Posed on Bounded Intervals with General Boundary Conditions
Abstract
:1. Introduction
2. Notations and Auxiliary Facts
3. Formulation of the Problem
4. Local Regular Solutions
5. Global Regular Solutions
6. Exponential Decay of Small Regular Solutions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benia, Y.; Scapellato, A. Existence of solution to Korteweg-de Vries equation in a non-parabolic domain. Nonlinear Anal. 2020, 195, 111758. [Google Scholar] [CrossRef]
- Bona, J.L.; Sun, S.-M.; Zhang, B.-Y. A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Commun. Part. Differ. Equ. 2003, 28, 1391–1436. [Google Scholar] [CrossRef]
- Jeffrey, A.; Kakutani, T. Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation. SIAM Rev. 1972, 14, 582–643. [Google Scholar] [CrossRef]
- Larkin, N.A.; Tronco, E. Nonlinear quarter-plane problem for the Korteweg-de Vries equation. Electron. J. Differ. Equ. 2011, 2011, 1–22. [Google Scholar]
- Biagioni, H.A.; Linares, F. On the Benney–Lin and Kawahara equations. J. Math. Anal. Appl. 1997, 211, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Faminskii, A.V.; Martynov, E.V. On initial-boundary value problems on semiaxis for generalized Kawahara equation. Contemp. Math. Fundam. Dir. 2019, 65, 683–699. (In Russian) [Google Scholar] [CrossRef]
- Kawahara, T. Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 1972, 33, 260–264. [Google Scholar] [CrossRef]
- Kuvshinov, R.V.; Faminskii, A.V. Mixed Problem for the Kawahara Equation in a Half-Strip. Differ. Equ. 2009, 45, 404–415. [Google Scholar] [CrossRef]
- Boutet de Monvel, A.; Shepelsky, D. Initial boundary value problem for the mKdV equation on a finite interval. Annales de l’institut Fourier 2004, 54, 1477–1495. [Google Scholar] [CrossRef] [Green Version]
- Bubnov, B.A. General boundary-value problems for the Korteweg-de Vries equation in a bounded domain. Differ. Uravn. 1979, 15, 26–31. [Google Scholar]
- Bubnov, B.A. Solvability in the large of nonlinear boundary-value problems for the Korteweg-de Vries equation in a bounded domain. Differ. Uravn. 1980, 16, 34–41. [Google Scholar]
- Ceballos, J.; Sepulveda, M.; Villagran, O. The Korteweg-de Vries- Kawahara equation in a bounded domain and some numerical results. Appl. Math. Comput. 2007, 190, 912–936. [Google Scholar] [CrossRef] [Green Version]
- Doronin, G.G.; Larkin, N.A. Kawahara equation in a bounded domain. Discret. Contin. Dyn. Syst. B 2008, 10, 783–799. [Google Scholar] [CrossRef]
- Faminskii, A.V.; Larkin, N.A. Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Electron. J. Differ. Equ. 2010, 2010, 1–20. [Google Scholar]
- Kramer, E.F. Nonhomogeneous Boundary Value Problems for the Korteweg-de Vries Equations on a Bounded Domain. Ph.D. Thesis, University of Cincinatti, Cincinnati, OH, USA, 2009. [Google Scholar]
- Larkin, N.A. Correct initial boundary value problems for dispersive equations. J. Math. Anal. Appl. 2008, 344, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.A. Korteweg-de Vries and Kuramoto-Sivashinsky Equations in Bounded Domains. J. Math. Anal. Appl. 2004, 297, 169–185. [Google Scholar] [CrossRef]
- Larkin, N.A.; Luchesi, J. General Mixed Problems for the KdV Equations on Bounded Intervals. Electron. J. Differ. Equ. 2010, 2010, 1–17. [Google Scholar]
- Larkin, N.A.; Simões, M.H. The Kawahara equation on bounded intervals and on a half-line. Nonlinear Anal. 2015, 127, 397–412. [Google Scholar] [CrossRef]
- Capistrano-Filho, R.A.; Sun, S.-M.; Zhang, B.-Y. General Boundary Value Problems of the Korteweg-de Vries Equation on a Bounded Domain. Math. Control Relat. Fields 2018, 8, 583–605. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation. Math. Eng. 2020, 3, 1–43. [Google Scholar] [CrossRef]
- Larkin, N.A.; Simões, M.H. General Boundary Conditions for the Kawahara Equations on Bounded Intervals. Electron. J. Differ. Equ. 2013, 2013, 1–21. [Google Scholar]
- Isaza, P.; Linares, F.; Ponce, G. Decay properties for solutions of fifth order nonlinear dispersive equations. J. Differ. Equ. 2015, 258, 764–795. [Google Scholar] [CrossRef]
- Kenig, C.E.; Ponce, G.; Vega, L. Higher -order nonlinear dispersive equations. Proc. Am. Math. Soc. 1994, 122, 157–166. [Google Scholar] [CrossRef]
- Larkin, N.A.; Luchesi, J. Higher-Order Stationary Dispersive Equations on Bounded Intervals. Adv. Math. Phys. 2018, 2018, 7874305. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.A.; Luchesi, J. Initial-boundary value problems for generalized dispersive equations of higher orders posed on bounded intervals. Appl. Math. Optim. 2019. [Google Scholar] [CrossRef]
- Volevich, L.R.; Gindikin, S.C. A mixed problem for (2b + 1)-hyperbolic equations. Tr. Mosk. Mat. Obs. 1981, 43, 197–259. (In Russian) [Google Scholar]
- Larkin, N.A.; Luchesi, J. Formulation of problems for stationary dispersive equations of higher orders on bounded intervals with general boundary conditions. Contemp. Math. 2020, 1. [Google Scholar] [CrossRef]
- Kato, T. On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Adv. Math. Supl. Stud. Stud. Appl. Math. 1983, 8, 93–128. [Google Scholar]
- Adams, R.; Fournier, J. Sobolev Spaces, 2nd ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Nirenberg, L. On elliptic partial differential equations. In Annali della Scuola Nomale Superiore di Pisa, Classe di Scienze 3a série; tome 13, n° 2; Springer: Berlin/Heidelberg, Germany, 1959; pp. 115–162. [Google Scholar]
- Nazarov, A.I.; Kuznetsov, N.G.; Poborchi, S.V.V.A. Steklov and Problem of Sharp (Exact) Constants in Inequalities of Mathematical Physics. arXiv 2013, arXiv:1307.8025v1. [Google Scholar]
- Zheng, S. Nonlinear Evolution Equations; Chapman Hill/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larkin, N.A.; Luchesi, J. Initial-Boundary Value Problems for Nonlinear Dispersive Equations of Higher Orders Posed on Bounded Intervals with General Boundary Conditions. Mathematics 2021, 9, 165. https://doi.org/10.3390/math9020165
Larkin NA, Luchesi J. Initial-Boundary Value Problems for Nonlinear Dispersive Equations of Higher Orders Posed on Bounded Intervals with General Boundary Conditions. Mathematics. 2021; 9(2):165. https://doi.org/10.3390/math9020165
Chicago/Turabian StyleLarkin, Nikolai A., and Jackson Luchesi. 2021. "Initial-Boundary Value Problems for Nonlinear Dispersive Equations of Higher Orders Posed on Bounded Intervals with General Boundary Conditions" Mathematics 9, no. 2: 165. https://doi.org/10.3390/math9020165
APA StyleLarkin, N. A., & Luchesi, J. (2021). Initial-Boundary Value Problems for Nonlinear Dispersive Equations of Higher Orders Posed on Bounded Intervals with General Boundary Conditions. Mathematics, 9(2), 165. https://doi.org/10.3390/math9020165