Boolean Functions and Permanents of Sylvester Hadamard Matrices
Abstract
:1. Introduction
2. Preliminaries
2.1. Hadamard Matrices
2.2. Boolean Functions
- , where .
- where is Kronecker’s symbol.
- where .
3. Ryser’s Formula for and the Walsh Spectrum of Boolean Functions
- .
- Let f be an arbitrary and be the result of concatenating the TT of f to itself. Then .
- Let , and . If then . For instance, when or 4.
- Let and . Then .
- Theorem 1 of [16] proves that the Walsh spectrum of f coincides with the spectrum of , the Cayley graph associated to f, where the vertex set of is equal to , while the edge set is defined as follows:This connects the problem of analyzing the spectral coefficients of Boolean functions with the framework of spectral analysis of graphs. Let us denote by the eigenvalues of the adjacency matrix of the Cayley graph associated to f.
- Corollary 2 of [17] proves that the product .
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guesmi, R.; Farah, M.A.B.; Kachouri, A.; Samet, M. Chaos-based designing of a highly nonlinear S-box using Boolean functions. In Proceedings of the 12th International Multi-Conference on Systems, Signals and Devices, SSD, Tunisia, Mahdia, 16–19 March 2015; Volume 2015, p. 7348106. [Google Scholar]
- Tokareva, N. Bent Functions: Results and Applications to Cryptography; Elsevier Science: London, UK, 2015. [Google Scholar]
- Valiant, L.G. The complexity of computing the permanent. Theoret. Comput. Sci. 1979, 8, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Aaronson, S. P≟NP Chapter 3 in Open Problems in Mathematics; Nash, J.F., Rassias, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Minc, H. Permanents. In Encyclopedia of Mathematics and its Applications 6; Addison-Wesley: Reading, MA, USA, 1978. [Google Scholar]
- Horadam, K.J. Hadamard Matrices and Their Applications; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Carlet, C. Boolean functions for cryptography and error correcting codes. In Boolean Models and Methods in Mathematics, Computer Science and Engineering; Crama, Y., Hammer, P.L., Eds.; Cambrige University Press: Cambridge, UK, 2010; pp. 257–397. [Google Scholar]
- Mitrouli, M. Sylvester Hadamard matrices revisited. Spec. Matrices 2014, 2, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Wanless, I.M. Permanents of matrices of signed ones. Linear Multilinear Algebra 2005, 52, 57–63. [Google Scholar] [CrossRef]
- Szöllósi, F.; Department of Mathematical Science, Shimane University, Matsue, Japan. Personal communication, 2014.
- Carlet, C. On cryptographic complexity of Boolean functions. In Proceedings of the Sixth Conference on Finite Fields with Applications to Coding Theory, Cryptrography, and Related Areas, Berlin, Germany; Mullen, G.L., Stichtenoth, H., Tapia-Recillas, H., Eds.; Springer: Berlin, Germany, 2002; pp. 53–69. [Google Scholar]
- Wanless, I.M. Permanents. In Chapter 31 in Handbook of Linear Algebra; Hogben, L., Ed.; Chapman & Hall/CRC: London, UK, 2007. [Google Scholar]
- Preneel, B. Analysis and Design of Cryptographic Hash Functions. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 1993. [Google Scholar]
- Uyan, E.; Calik, C.; Doganaksoy, A. Counting Boolean functions with specified values in their Walsh spectrum. J. Comput. Appl. Math. 2014, 259, 522–528. [Google Scholar] [CrossRef]
- Langevin, P.; Leander, G. Counting all bent functions in dimension eight 992705892659343370305785861242880. Des. Codes Cryptogr. 2011, 59, 193–205. [Google Scholar] [CrossRef]
- Bernasconi, A.; Codenotti, B. Spectral analysis of Boolean functions as a graph eigenvalue problem. IEEE Trans. Comput. 1999, 48, 345–351. [Google Scholar]
- Mitton, M. On the Walsh-Fourier analysis of Boolean functions. J. Discret. Math. Scien. Cryptogr. 2006, 9, 429–439. [Google Scholar] [CrossRef]
- Olejár, D.; Stanek, M. On cryptographic properties of fandom Boolean functions. J. Univers. Comput. Sci. 1998, 4, 705–717. [Google Scholar]
r | # Inequivalent 3-Variable Boolean Functions | # Orbits |
---|---|---|
1 | 1 | 8 |
3 | 1 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armario, J.A. Boolean Functions and Permanents of Sylvester Hadamard Matrices. Mathematics 2021, 9, 177. https://doi.org/10.3390/math9020177
Armario JA. Boolean Functions and Permanents of Sylvester Hadamard Matrices. Mathematics. 2021; 9(2):177. https://doi.org/10.3390/math9020177
Chicago/Turabian StyleArmario, José Andrés. 2021. "Boolean Functions and Permanents of Sylvester Hadamard Matrices" Mathematics 9, no. 2: 177. https://doi.org/10.3390/math9020177
APA StyleArmario, J. A. (2021). Boolean Functions and Permanents of Sylvester Hadamard Matrices. Mathematics, 9(2), 177. https://doi.org/10.3390/math9020177